jarif commited on
Commit
75730a8
Β·
verified Β·
1 Parent(s): 88a5565

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +70 -71
  2. ingest.py +64 -64
app.py CHANGED
@@ -1,71 +1,70 @@
1
- import os
2
- import logging
3
- import streamlit as st
4
- from langchain.embeddings import HuggingFaceEmbeddings
5
- from langchain.vectorstores import Chroma
6
- from langchain.chains import RetrievalQA
7
- from langchain_huggingface import HuggingFacePipeline
8
- from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
9
-
10
- # Configure logging
11
- logging.basicConfig(level=logging.DEBUG)
12
-
13
- def load_vector_store():
14
- embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
15
- vector_store = Chroma(persist_directory="./chroma_db", embedding_function=embeddings)
16
- return vector_store
17
-
18
- def load_llm():
19
- checkpoint = "LaMini-T5-738M"
20
- tokenizer = AutoTokenizer.from_pretrained(checkpoint)
21
- model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
22
- pipe = pipeline(
23
- 'text2text-generation',
24
- model=model,
25
- tokenizer=tokenizer,
26
- max_length=256,
27
- do_sample=True,
28
- temperature=0.3,
29
- top_p=0.95
30
- )
31
- return HuggingFacePipeline(pipeline=pipe)
32
-
33
- def process_answer(question):
34
- try:
35
- vector_store = load_vector_store()
36
- llm = load_llm()
37
- qa = RetrievalQA.from_chain_type(
38
- llm=llm,
39
- chain_type="stuff",
40
- retriever=vector_store.as_retriever(),
41
- return_source_documents=True
42
- )
43
- result = qa.invoke(question)
44
- answer = result['result']
45
- return answer, result
46
- except Exception as e:
47
- logging.error(f"An error occurred while processing the answer: {e}")
48
- st.error(f"An error occurred while processing the answer: {e}")
49
- return "An error occurred while processing your request.", {}
50
-
51
- def main():
52
- st.title("Search Your PDF πŸ“šπŸ“")
53
- with st.expander("About the App"):
54
- st.markdown(
55
- """
56
- This is a Generative AI powered Question and Answering app that responds to questions about your PDF File.
57
- """
58
- )
59
- question = st.text_area("Enter your Question")
60
- if st.button("Ask"):
61
- st.info("Your Question: " + question)
62
- st.info("Your Answer")
63
- try:
64
- answer, metadata = process_answer(question)
65
- st.write(answer)
66
- st.write(metadata)
67
- except Exception as e:
68
- st.error(f"An unexpected error occurred: {e}")
69
-
70
- if __name__ == '__main__':
71
- main()
 
1
+ import os
2
+ import logging
3
+ import streamlit as st
4
+ from langchain.embeddings import HuggingFaceEmbeddings
5
+ from langchain.vectorstores import Chroma
6
+ from langchain.chains import RetrievalQA
7
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
8
+
9
+ # Configure logging
10
+ logging.basicConfig(level=logging.DEBUG)
11
+
12
+ def load_vector_store():
13
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
14
+ vector_store = Chroma(persist_directory="./chroma_db", embedding_function=embeddings)
15
+ return vector_store
16
+
17
+ def load_llm():
18
+ checkpoint = "LaMini-T5-738M"
19
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
20
+ model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
21
+ pipe = pipeline(
22
+ 'text2text-generation',
23
+ model=model,
24
+ tokenizer=tokenizer,
25
+ max_length=256,
26
+ do_sample=True,
27
+ temperature=0.3,
28
+ top_p=0.95
29
+ )
30
+ return pipe
31
+
32
+ def process_answer(question):
33
+ try:
34
+ vector_store = load_vector_store()
35
+ llm = load_llm()
36
+ qa = RetrievalQA.from_chain_type(
37
+ llm=llm,
38
+ chain_type="stuff",
39
+ retriever=vector_store.as_retriever(),
40
+ return_source_documents=True
41
+ )
42
+ result = qa.invoke(question)
43
+ answer = result['result']
44
+ return answer, result
45
+ except Exception as e:
46
+ logging.error(f"An error occurred while processing the answer: {e}")
47
+ st.error(f"An error occurred while processing the answer: {e}")
48
+ return "An error occurred while processing your request.", {}
49
+
50
+ def main():
51
+ st.title("Search Your PDF πŸ“šπŸ“")
52
+ with st.expander("About the App"):
53
+ st.markdown(
54
+ """
55
+ This is a Generative AI powered Question and Answering app that responds to questions about your PDF File.
56
+ """
57
+ )
58
+ question = st.text_area("Enter your Question")
59
+ if st.button("Ask"):
60
+ st.info("Your Question: " + question)
61
+ st.info("Your Answer")
62
+ try:
63
+ answer, metadata = process_answer(question)
64
+ st.write(answer)
65
+ st.write(metadata)
66
+ except Exception as e:
67
+ st.error(f"An unexpected error occurred: {e}")
68
+
69
+ if __name__ == '__main__':
70
+ main()
 
ingest.py CHANGED
@@ -1,64 +1,64 @@
1
- import os
2
- import logging
3
- from langchain.document_loaders import PDFMinerLoader
4
- from langchain.text_splitter import RecursiveCharacterTextSplitter
5
- from langchain.embeddings import HuggingFaceEmbeddings
6
- from langchain.vectorstores import Chroma
7
-
8
- # Configure logging
9
- logging.basicConfig(level=logging.INFO)
10
- logger = logging.getLogger(__name__)
11
-
12
- def create_vector_store():
13
- documents = []
14
- docs_dir = "docs"
15
- if not os.path.exists(docs_dir):
16
- logger.error(f"The directory '{docs_dir}' does not exist.")
17
- return
18
-
19
- for root, dirs, files in os.walk(docs_dir):
20
- for file in files:
21
- if file.endswith(".pdf"):
22
- file_path = os.path.join(root, file)
23
- logger.info(f"Loading document: {file_path}")
24
- try:
25
- loader = PDFMinerLoader(file_path)
26
- loaded_docs = loader.load()
27
- if loaded_docs:
28
- logger.info(f"Loaded {len(loaded_docs)} documents from {file_path}")
29
- documents.extend(loaded_docs)
30
- else:
31
- logger.warning(f"No documents loaded from {file_path}")
32
- except Exception as e:
33
- logger.error(f"Error loading {file_path}: {e}")
34
-
35
- if not documents:
36
- logger.error("No documents were loaded. Check the 'docs' directory and file paths.")
37
- return
38
-
39
- logger.info(f"Loaded {len(documents)} documents.")
40
-
41
- text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
42
- texts = text_splitter.split_documents(documents)
43
- logger.info(f"Created {len(texts)} text chunks.")
44
-
45
- if not texts:
46
- logger.error("No text chunks created. Check the text splitting process.")
47
- return
48
-
49
- try:
50
- embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
51
- logger.info("Embeddings initialized successfully.")
52
- except Exception as e:
53
- logger.error(f"Failed to initialize embeddings: {e}")
54
- return
55
-
56
- try:
57
- vector_store = Chroma.from_documents(texts, embeddings, persist_directory="./chroma_db")
58
- vector_store.persist()
59
- logger.info(f"Created Chroma vector store with {len(texts)} vectors.")
60
- except Exception as e:
61
- logger.error(f"Failed to create Chroma vector store: {e}")
62
-
63
- if __name__ == "__main__":
64
- create_vector_store()
 
1
+ import os
2
+ import logging
3
+ from langchain.document_loaders import PDFMinerLoader
4
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
5
+ from langchain.embeddings import HuggingFaceEmbeddings
6
+ from langchain.vectorstores import Chroma
7
+
8
+ # Configure logging
9
+ logging.basicConfig(level=logging.INFO)
10
+ logger = logging.getLogger(__name__)
11
+
12
+ def create_vector_store():
13
+ documents = []
14
+ docs_dir = "docs"
15
+ if not os.path.exists(docs_dir):
16
+ logger.error(f"The directory '{docs_dir}' does not exist.")
17
+ return
18
+
19
+ for root, dirs, files in os.walk(docs_dir):
20
+ for file in files:
21
+ if file.endswith(".pdf"):
22
+ file_path = os.path.join(root, file)
23
+ logger.info(f"Loading document: {file_path}")
24
+ try:
25
+ loader = PDFMinerLoader(file_path)
26
+ loaded_docs = loader.load()
27
+ if loaded_docs:
28
+ logger.info(f"Loaded {len(loaded_docs)} documents from {file_path}")
29
+ documents.extend(loaded_docs)
30
+ else:
31
+ logger.warning(f"No documents loaded from {file_path}")
32
+ except Exception as e:
33
+ logger.error(f"Error loading {file_path}: {e}")
34
+
35
+ if not documents:
36
+ logger.error("No documents were loaded. Check the 'docs' directory and file paths.")
37
+ return
38
+
39
+ logger.info(f"Loaded {len(documents)} documents.")
40
+
41
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
42
+ texts = text_splitter.split_documents(documents)
43
+ logger.info(f"Created {len(texts)} text chunks.")
44
+
45
+ if not texts:
46
+ logger.error("No text chunks created. Check the text splitting process.")
47
+ return
48
+
49
+ try:
50
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
51
+ logger.info("Embeddings initialized successfully.")
52
+ except Exception as e:
53
+ logger.error(f"Failed to initialize embeddings: {e}")
54
+ return
55
+
56
+ try:
57
+ vector_store = Chroma.from_documents(texts, embeddings, persist_directory="./chroma_db")
58
+ vector_store.persist()
59
+ logger.info(f"Created Chroma vector store with {len(texts)} vectors.")
60
+ except Exception as e:
61
+ logger.error(f"Failed to create Chroma vector store: {e}")
62
+
63
+ if __name__ == "__main__":
64
+ create_vector_store()