Upload 2 files
Browse files
app.py
CHANGED
@@ -1,71 +1,70 @@
|
|
1 |
-
import os
|
2 |
-
import logging
|
3 |
-
import streamlit as st
|
4 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
5 |
-
from langchain.vectorstores import Chroma
|
6 |
-
from langchain.chains import RetrievalQA
|
7 |
-
from
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
vector_store
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
)
|
43 |
-
|
44 |
-
answer
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
st.
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
st.info("Your
|
62 |
-
|
63 |
-
|
64 |
-
answer
|
65 |
-
st.write(
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
main()
|
|
|
1 |
+
import os
|
2 |
+
import logging
|
3 |
+
import streamlit as st
|
4 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
5 |
+
from langchain.vectorstores import Chroma
|
6 |
+
from langchain.chains import RetrievalQA
|
7 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
8 |
+
|
9 |
+
# Configure logging
|
10 |
+
logging.basicConfig(level=logging.DEBUG)
|
11 |
+
|
12 |
+
def load_vector_store():
|
13 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
14 |
+
vector_store = Chroma(persist_directory="./chroma_db", embedding_function=embeddings)
|
15 |
+
return vector_store
|
16 |
+
|
17 |
+
def load_llm():
|
18 |
+
checkpoint = "LaMini-T5-738M"
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
20 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
|
21 |
+
pipe = pipeline(
|
22 |
+
'text2text-generation',
|
23 |
+
model=model,
|
24 |
+
tokenizer=tokenizer,
|
25 |
+
max_length=256,
|
26 |
+
do_sample=True,
|
27 |
+
temperature=0.3,
|
28 |
+
top_p=0.95
|
29 |
+
)
|
30 |
+
return pipe
|
31 |
+
|
32 |
+
def process_answer(question):
|
33 |
+
try:
|
34 |
+
vector_store = load_vector_store()
|
35 |
+
llm = load_llm()
|
36 |
+
qa = RetrievalQA.from_chain_type(
|
37 |
+
llm=llm,
|
38 |
+
chain_type="stuff",
|
39 |
+
retriever=vector_store.as_retriever(),
|
40 |
+
return_source_documents=True
|
41 |
+
)
|
42 |
+
result = qa.invoke(question)
|
43 |
+
answer = result['result']
|
44 |
+
return answer, result
|
45 |
+
except Exception as e:
|
46 |
+
logging.error(f"An error occurred while processing the answer: {e}")
|
47 |
+
st.error(f"An error occurred while processing the answer: {e}")
|
48 |
+
return "An error occurred while processing your request.", {}
|
49 |
+
|
50 |
+
def main():
|
51 |
+
st.title("Search Your PDF ππ")
|
52 |
+
with st.expander("About the App"):
|
53 |
+
st.markdown(
|
54 |
+
"""
|
55 |
+
This is a Generative AI powered Question and Answering app that responds to questions about your PDF File.
|
56 |
+
"""
|
57 |
+
)
|
58 |
+
question = st.text_area("Enter your Question")
|
59 |
+
if st.button("Ask"):
|
60 |
+
st.info("Your Question: " + question)
|
61 |
+
st.info("Your Answer")
|
62 |
+
try:
|
63 |
+
answer, metadata = process_answer(question)
|
64 |
+
st.write(answer)
|
65 |
+
st.write(metadata)
|
66 |
+
except Exception as e:
|
67 |
+
st.error(f"An unexpected error occurred: {e}")
|
68 |
+
|
69 |
+
if __name__ == '__main__':
|
70 |
+
main()
|
|
ingest.py
CHANGED
@@ -1,64 +1,64 @@
|
|
1 |
-
import os
|
2 |
-
import logging
|
3 |
-
from langchain.document_loaders import PDFMinerLoader
|
4 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
6 |
-
from langchain.vectorstores import Chroma
|
7 |
-
|
8 |
-
# Configure logging
|
9 |
-
logging.basicConfig(level=logging.INFO)
|
10 |
-
logger = logging.getLogger(__name__)
|
11 |
-
|
12 |
-
def create_vector_store():
|
13 |
-
documents = []
|
14 |
-
docs_dir = "docs"
|
15 |
-
if not os.path.exists(docs_dir):
|
16 |
-
logger.error(f"The directory '{docs_dir}' does not exist.")
|
17 |
-
return
|
18 |
-
|
19 |
-
for root, dirs, files in os.walk(docs_dir):
|
20 |
-
for file in files:
|
21 |
-
if file.endswith(".pdf"):
|
22 |
-
file_path = os.path.join(root, file)
|
23 |
-
logger.info(f"Loading document: {file_path}")
|
24 |
-
try:
|
25 |
-
loader = PDFMinerLoader(file_path)
|
26 |
-
loaded_docs = loader.load()
|
27 |
-
if loaded_docs:
|
28 |
-
logger.info(f"Loaded {len(loaded_docs)} documents from {file_path}")
|
29 |
-
documents.extend(loaded_docs)
|
30 |
-
else:
|
31 |
-
logger.warning(f"No documents loaded from {file_path}")
|
32 |
-
except Exception as e:
|
33 |
-
logger.error(f"Error loading {file_path}: {e}")
|
34 |
-
|
35 |
-
if not documents:
|
36 |
-
logger.error("No documents were loaded. Check the 'docs' directory and file paths.")
|
37 |
-
return
|
38 |
-
|
39 |
-
logger.info(f"Loaded {len(documents)} documents.")
|
40 |
-
|
41 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
42 |
-
texts = text_splitter.split_documents(documents)
|
43 |
-
logger.info(f"Created {len(texts)} text chunks.")
|
44 |
-
|
45 |
-
if not texts:
|
46 |
-
logger.error("No text chunks created. Check the text splitting process.")
|
47 |
-
return
|
48 |
-
|
49 |
-
try:
|
50 |
-
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
51 |
-
logger.info("Embeddings initialized successfully.")
|
52 |
-
except Exception as e:
|
53 |
-
logger.error(f"Failed to initialize embeddings: {e}")
|
54 |
-
return
|
55 |
-
|
56 |
-
try:
|
57 |
-
vector_store = Chroma.from_documents(texts, embeddings, persist_directory="./chroma_db")
|
58 |
-
vector_store.persist()
|
59 |
-
logger.info(f"Created Chroma vector store with {len(texts)} vectors.")
|
60 |
-
except Exception as e:
|
61 |
-
logger.error(f"Failed to create Chroma vector store: {e}")
|
62 |
-
|
63 |
-
if __name__ == "__main__":
|
64 |
-
create_vector_store()
|
|
|
1 |
+
import os
|
2 |
+
import logging
|
3 |
+
from langchain.document_loaders import PDFMinerLoader
|
4 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
6 |
+
from langchain.vectorstores import Chroma
|
7 |
+
|
8 |
+
# Configure logging
|
9 |
+
logging.basicConfig(level=logging.INFO)
|
10 |
+
logger = logging.getLogger(__name__)
|
11 |
+
|
12 |
+
def create_vector_store():
|
13 |
+
documents = []
|
14 |
+
docs_dir = "docs"
|
15 |
+
if not os.path.exists(docs_dir):
|
16 |
+
logger.error(f"The directory '{docs_dir}' does not exist.")
|
17 |
+
return
|
18 |
+
|
19 |
+
for root, dirs, files in os.walk(docs_dir):
|
20 |
+
for file in files:
|
21 |
+
if file.endswith(".pdf"):
|
22 |
+
file_path = os.path.join(root, file)
|
23 |
+
logger.info(f"Loading document: {file_path}")
|
24 |
+
try:
|
25 |
+
loader = PDFMinerLoader(file_path)
|
26 |
+
loaded_docs = loader.load()
|
27 |
+
if loaded_docs:
|
28 |
+
logger.info(f"Loaded {len(loaded_docs)} documents from {file_path}")
|
29 |
+
documents.extend(loaded_docs)
|
30 |
+
else:
|
31 |
+
logger.warning(f"No documents loaded from {file_path}")
|
32 |
+
except Exception as e:
|
33 |
+
logger.error(f"Error loading {file_path}: {e}")
|
34 |
+
|
35 |
+
if not documents:
|
36 |
+
logger.error("No documents were loaded. Check the 'docs' directory and file paths.")
|
37 |
+
return
|
38 |
+
|
39 |
+
logger.info(f"Loaded {len(documents)} documents.")
|
40 |
+
|
41 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
42 |
+
texts = text_splitter.split_documents(documents)
|
43 |
+
logger.info(f"Created {len(texts)} text chunks.")
|
44 |
+
|
45 |
+
if not texts:
|
46 |
+
logger.error("No text chunks created. Check the text splitting process.")
|
47 |
+
return
|
48 |
+
|
49 |
+
try:
|
50 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
51 |
+
logger.info("Embeddings initialized successfully.")
|
52 |
+
except Exception as e:
|
53 |
+
logger.error(f"Failed to initialize embeddings: {e}")
|
54 |
+
return
|
55 |
+
|
56 |
+
try:
|
57 |
+
vector_store = Chroma.from_documents(texts, embeddings, persist_directory="./chroma_db")
|
58 |
+
vector_store.persist()
|
59 |
+
logger.info(f"Created Chroma vector store with {len(texts)} vectors.")
|
60 |
+
except Exception as e:
|
61 |
+
logger.error(f"Failed to create Chroma vector store: {e}")
|
62 |
+
|
63 |
+
if __name__ == "__main__":
|
64 |
+
create_vector_store()
|