Update app.py
Browse files
app.py
CHANGED
@@ -1,30 +1,18 @@
|
|
1 |
import os
|
2 |
-
import faiss
|
3 |
import logging
|
4 |
import streamlit as st
|
5 |
from langchain.embeddings import HuggingFaceEmbeddings
|
6 |
-
from langchain.vectorstores import
|
7 |
from langchain.chains import RetrievalQA
|
8 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
9 |
|
10 |
# Configure logging
|
11 |
logging.basicConfig(level=logging.DEBUG)
|
12 |
|
13 |
-
def
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
raise FileNotFoundError(f"FAISS index not found at {index_path}.")
|
18 |
-
try:
|
19 |
-
logging.info(f"Attempting to load FAISS index from {index_path}.")
|
20 |
-
index = faiss.read_index(index_path)
|
21 |
-
logging.info("FAISS index loaded successfully.")
|
22 |
-
st.success("FAISS index loaded successfully.")
|
23 |
-
return index
|
24 |
-
except Exception as e:
|
25 |
-
logging.error(f"Failed to load FAISS index: {e}")
|
26 |
-
st.error(f"Failed to load FAISS index: {e}")
|
27 |
-
raise
|
28 |
|
29 |
def load_llm():
|
30 |
checkpoint = "LaMini-T5-738M"
|
@@ -42,16 +30,13 @@ def load_llm():
|
|
42 |
return pipe
|
43 |
|
44 |
def process_answer(question):
|
45 |
-
index_path = 'faiss_index/index.faiss'
|
46 |
-
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
47 |
try:
|
48 |
-
|
49 |
-
retriever = FAISS(index=faiss_index, embeddings=embeddings)
|
50 |
llm = load_llm()
|
51 |
qa = RetrievalQA.from_chain_type(
|
52 |
llm=llm,
|
53 |
chain_type="stuff",
|
54 |
-
retriever=
|
55 |
return_source_documents=True
|
56 |
)
|
57 |
result = qa.invoke(question)
|
|
|
1 |
import os
|
|
|
2 |
import logging
|
3 |
import streamlit as st
|
4 |
from langchain.embeddings import HuggingFaceEmbeddings
|
5 |
+
from langchain.vectorstores import Chroma
|
6 |
from langchain.chains import RetrievalQA
|
7 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
8 |
|
9 |
# Configure logging
|
10 |
logging.basicConfig(level=logging.DEBUG)
|
11 |
|
12 |
+
def load_vector_store():
|
13 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
14 |
+
vector_store = Chroma(persist_directory="./chroma_db", embedding_function=embeddings)
|
15 |
+
return vector_store
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
def load_llm():
|
18 |
checkpoint = "LaMini-T5-738M"
|
|
|
30 |
return pipe
|
31 |
|
32 |
def process_answer(question):
|
|
|
|
|
33 |
try:
|
34 |
+
vector_store = load_vector_store()
|
|
|
35 |
llm = load_llm()
|
36 |
qa = RetrievalQA.from_chain_type(
|
37 |
llm=llm,
|
38 |
chain_type="stuff",
|
39 |
+
retriever=vector_store.as_retriever(),
|
40 |
return_source_documents=True
|
41 |
)
|
42 |
result = qa.invoke(question)
|