Update ingest.py
Browse files
ingest.py
CHANGED
@@ -1,22 +1,25 @@
|
|
1 |
import os
|
2 |
import logging
|
3 |
import faiss
|
4 |
-
import numpy as np
|
5 |
from langchain_community.document_loaders import PDFMinerLoader
|
6 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
|
8 |
|
|
|
9 |
logging.basicConfig(level=logging.INFO)
|
10 |
logger = logging.getLogger(__name__)
|
11 |
|
12 |
def create_faiss_index():
|
13 |
documents = []
|
14 |
-
docs_dir = "docs"
|
15 |
|
|
|
16 |
if not os.path.exists(docs_dir):
|
17 |
logger.error(f"The directory '{docs_dir}' does not exist.")
|
18 |
return
|
19 |
|
|
|
20 |
for root, dirs, files in os.walk(docs_dir):
|
21 |
for file in files:
|
22 |
if file.endswith(".pdf"):
|
@@ -33,38 +36,39 @@ def create_faiss_index():
|
|
33 |
except Exception as e:
|
34 |
logger.error(f"Error loading {file_path}: {e}")
|
35 |
|
|
|
36 |
if not documents:
|
37 |
logger.error("No documents were loaded. Check the 'docs' directory and file paths.")
|
38 |
return
|
39 |
|
40 |
logger.info(f"Loaded {len(documents)} documents.")
|
41 |
|
|
|
42 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
43 |
texts = text_splitter.split_documents(documents)
|
44 |
logger.info(f"Created {len(texts)} text chunks.")
|
|
|
|
|
45 |
if not texts:
|
46 |
logger.error("No text chunks created. Check the text splitting process.")
|
47 |
return
|
48 |
|
49 |
try:
|
|
|
50 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
51 |
logger.info("Embeddings initialized successfully.")
|
52 |
except Exception as e:
|
53 |
logger.error(f"Failed to initialize embeddings: {e}")
|
54 |
return
|
55 |
|
56 |
-
embedding_vectors = np.array([embeddings.embed(text) for text in texts])
|
57 |
-
dimension = embedding_vectors.shape[1]
|
58 |
-
|
59 |
try:
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
logger.info(f"Created FAISS index with {len(texts)} vectors.")
|
65 |
except Exception as e:
|
66 |
logger.error(f"Failed to create FAISS index: {e}")
|
67 |
-
return
|
68 |
|
69 |
if __name__ == "__main__":
|
70 |
create_faiss_index()
|
|
|
1 |
import os
|
2 |
import logging
|
3 |
import faiss
|
|
|
4 |
from langchain_community.document_loaders import PDFMinerLoader
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
7 |
+
from langchain.vectorstores import FAISS
|
8 |
|
9 |
+
# Configure logging
|
10 |
logging.basicConfig(level=logging.INFO)
|
11 |
logger = logging.getLogger(__name__)
|
12 |
|
13 |
def create_faiss_index():
|
14 |
documents = []
|
15 |
+
docs_dir = "docs" # Directory where PDF files are stored
|
16 |
|
17 |
+
# Check if the 'docs' directory exists
|
18 |
if not os.path.exists(docs_dir):
|
19 |
logger.error(f"The directory '{docs_dir}' does not exist.")
|
20 |
return
|
21 |
|
22 |
+
# Walk through the 'docs' directory and load PDF files
|
23 |
for root, dirs, files in os.walk(docs_dir):
|
24 |
for file in files:
|
25 |
if file.endswith(".pdf"):
|
|
|
36 |
except Exception as e:
|
37 |
logger.error(f"Error loading {file_path}: {e}")
|
38 |
|
39 |
+
# Check if any documents were loaded
|
40 |
if not documents:
|
41 |
logger.error("No documents were loaded. Check the 'docs' directory and file paths.")
|
42 |
return
|
43 |
|
44 |
logger.info(f"Loaded {len(documents)} documents.")
|
45 |
|
46 |
+
# Split documents into text chunks
|
47 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
48 |
texts = text_splitter.split_documents(documents)
|
49 |
logger.info(f"Created {len(texts)} text chunks.")
|
50 |
+
|
51 |
+
# Check if text chunks were created
|
52 |
if not texts:
|
53 |
logger.error("No text chunks created. Check the text splitting process.")
|
54 |
return
|
55 |
|
56 |
try:
|
57 |
+
# Initialize embeddings using HuggingFace models
|
58 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
59 |
logger.info("Embeddings initialized successfully.")
|
60 |
except Exception as e:
|
61 |
logger.error(f"Failed to initialize embeddings: {e}")
|
62 |
return
|
63 |
|
|
|
|
|
|
|
64 |
try:
|
65 |
+
# Create a FAISS index and save it
|
66 |
+
index = faiss.IndexFlatL2(embeddings.embedding_size)
|
67 |
+
vector_store = FAISS.from_documents(texts, embeddings, index)
|
68 |
+
vector_store.save_local("faiss_index")
|
69 |
logger.info(f"Created FAISS index with {len(texts)} vectors.")
|
70 |
except Exception as e:
|
71 |
logger.error(f"Failed to create FAISS index: {e}")
|
|
|
72 |
|
73 |
if __name__ == "__main__":
|
74 |
create_faiss_index()
|