import os import logging import streamlit as st from langchain_community.document_loaders import PDFMinerLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.vectorstores import FAISS logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) def create_faiss_index(): documents = [] docs_dir = "docs" if not os.path.exists(docs_dir): st.error(f"The directory '{docs_dir}' does not exist.") return for root, dirs, files in os.walk(docs_dir): for file in files: if file.endswith(".pdf"): file_path = os.path.join(root, file) st.info(f"Loading document: {file_path}") try: loader = PDFMinerLoader(file_path) documents.extend(loader.load()) except Exception as e: st.error(f"Error loading {file_path}: {e}") if not documents: st.error("No documents were loaded. Check the 'docs' directory and file paths.") return st.info(f"Loaded {len(documents)} documents.") text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50) texts = text_splitter.split_documents(documents) if not texts: st.error("No text chunks were created. Check the text splitting process.") return st.info(f"Created {len(texts)} text chunks.") try: embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") except Exception as e: st.error(f"Failed to initialize embeddings: {e}") return try: db = FAISS.from_documents(texts, embeddings) st.info(f"Created FAISS index with {len(texts)} vectors") except Exception as e: st.error(f"Failed to create FAISS index: {e}") return index_dir = "faiss_index" if not os.path.exists(index_dir): os.makedirs(index_dir) try: db.save_local(index_dir) st.success(f"FAISS index successfully saved to {index_dir}") index_path = os.path.join(index_dir, "index.faiss") st.info(f"Index file size: {os.path.getsize(index_path)} bytes") st.info(f"Index file permissions: {oct(os.stat(index_path).st_mode)[-3:]}") except Exception as e: st.error(f"Failed to save FAISS index: {e}") if __name__ == "__main__": create_faiss_index()