File size: 14,953 Bytes
a12ca3f 69b6195 a12ca3f 69b6195 a12ca3f 69b6195 a12ca3f 69b6195 a12ca3f 69b6195 a12ca3f 69b6195 a12ca3f 69b6195 a12ca3f 008bc3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
import streamlit as st
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.nn import GATConv
from torch_geometric.data import Data
import os
# Define FraudGNN class
class FraudGNN(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(FraudGNN, self).__init__()
self.conv1 = GATConv(input_dim, hidden_dim, heads=4, dropout=0.3)
self.conv2 = GATConv(hidden_dim * 4, hidden_dim, heads=1, dropout=0.3)
self.fc = nn.Linear(hidden_dim, output_dim)
def forward(self, data):
x, edge_index = data.x, data.edge_index
x = F.relu(self.conv1(x, edge_index))
x = F.dropout(x, p=0.3, training=self.training)
x = F.relu(self.conv2(x, edge_index))
x = self.fc(x)
return torch.sigmoid(x).squeeze()
# Device configuration
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Load model and threshold
try:
# Try root directory first (Hugging Face Spaces working directory)
model_path = 'fraud_gnn_model.pth'
threshold_path = 'optimal_threshold.txt'
# Fallback: Try relative to src/ (if files are misplaced)
if not os.path.exists(model_path):
model_path = os.path.join(os.path.dirname(__file__), 'fraud_gnn_model.pth')
if not os.path.exists(threshold_path):
threshold_path = os.path.join(os.path.dirname(__file__), 'optimal_threshold.txt')
# Alternative: If files are in a 'models/' folder (uncomment if applicable)
# model_path = os.path.join(os.path.dirname(__file__), '..', 'models', 'fraud_gnn_model.pth')
# threshold_path = os.path.join(os.path.dirname(__file__), '..', 'models', 'optimal_threshold.txt')
if not os.path.exists(model_path):
raise FileNotFoundError(f"Model file not found at {model_path}. Please upload fraud_gnn_model.pth to the repository root.")
if not os.path.exists(threshold_path):
raise FileNotFoundError(f"Threshold file not found at {threshold_path}. Please upload optimal_threshold.txt to the repository root.")
model = FraudGNN(input_dim=7, hidden_dim=16, output_dim=1).to(device)
model.load_state_dict(torch.load(model_path, map_location=device))
model.eval()
with open(threshold_path, 'r') as f:
threshold = float(f.read())
except FileNotFoundError as e:
st.error(f"Error: {e}")
st.stop()
except Exception as e:
st.error(f"Error loading model or threshold: {e}")
st.stop()
# City and state mappings
city_mapping = {
'Atlanta': 0, 'Bronx': 1, 'Brooklyn': 2, 'Chicago': 3, 'Dallas': 4, 'Houston': 5,
'Indianapolis': 6, 'Las Vegas': 7, 'Los Angeles': 8, 'Louisville': 9, 'Miami': 10,
'Minneapolis': 11, 'New York': 12, 'ONLINE': 13, 'Orlando': 14, 'Philadelphia': 15,
'San Antonio': 16, 'San Diego': 17, 'San Francisco': 18, 'Tucson': 19, 'other': 20
}
state_mapping = {
'AK': 0, 'AL': 1, 'AR': 2, 'AZ': 3, 'Algeria': 4, 'Antigua and Barbuda': 5, 'Argentina': 6,
'Aruba': 7, 'Australia': 8, 'Austria': 9, 'Azerbaijan': 10, 'Bahrain': 11, 'Bangladesh': 12,
'Barbados': 13, 'Belarus': 14, 'Belgium': 15, 'Belize': 16, 'Bosnia and Herzegovina': 17,
'Brazil': 18, 'CA': 19, 'CO': 20, 'CT': 21, 'Cabo Verde': 22, 'Cambodia': 23, 'Canada': 24,
'Central African Republic': 25, 'Chile': 26, 'China': 27, 'Colombia': 28, 'Costa Rica': 29,
"Cote d'Ivoire": 30, 'Croatia': 31, 'Czech Republic': 32, 'DC': 33, 'DE': 34, 'Denmark': 35,
'Dominica': 36, 'Dominican Republic': 37, 'East Timor (Timor-Leste)': 38, 'Ecuador': 39,
'Egypt': 40, 'Eritrea': 41, 'Estonia': 42, 'FL': 43, 'Fiji': 44, 'Finland': 45, 'France': 46,
'GA': 47, 'Georgia': 48, 'Germany': 49, 'Ghana': 50, 'Greece': 51, 'Guatemala': 52,
'Guyana': 53, 'HI': 54, 'Haiti': 55, 'Honduras': 56, 'Hong Kong': 57, 'Hungary': 58,
'IA': 59, 'ID': 60, 'IL': 61, 'IN': 62, 'Iceland': 63, 'India': 64, 'Indonesia': 65,
'Ireland': 66, 'Israel': 67, 'Italy': 68, 'Jamaica': 69, 'Japan': 70, 'Jordan': 71,
'KS': 72, 'KY': 73, 'Kenya': 74, 'Kosovo': 75, 'Kuwait': 76, 'LA': 77, 'Latvia': 78,
'Lebanon': 79, 'Liberia': 80, 'Lithuania': 81, 'Luxembourg': 82, 'MA': 83, 'MD': 84,
'ME': 85, 'MI': 86, 'MN': 87, 'MO': 88, 'MS': 89, 'MT': 90, 'Macedonia': 91,
'Malaysia': 92, 'Malta': 93, 'Mexico': 94, 'Moldova': 95, 'Monaco': 96, 'Morocco': 97,
'Mozambique': 98, 'Myanmar (Burma)': 99, 'NC': 100, 'ND': 101, 'NE': 102, 'NH': 103,
'NJ': 104, 'NM': 105, 'NV': 106, 'NY': 107, 'Nauru': 108, 'Netherlands': 109,
'New Zealand': 110, 'Nicaragua': 111, 'Niger': 112, 'Nigeria': 113, 'Norway': 114,
'OH': 115, 'OK': 116, 'OR': 117, 'Oman': 118, 'PA': 119, 'Pakistan': 120, 'Panama': 121,
'Peru': 122, 'Philippines': 123, 'Poland': 124, 'Portugal': 125, 'RI': 126, 'Romania': 127,
'Russia': 128, 'SC': 129, 'SD': 130, 'Saudi Arabia': 131, 'Senegal': 132, 'Serbia': 133,
'Seychelles': 134, 'Singapore': 135, 'Slovakia': 136, 'Slovenia': 137, 'Somalia': 138,
'South Africa': 139, 'South Korea': 140, 'Spain': 141, 'Sri Lanka': 142, 'Sudan': 143,
'Suriname': 144, 'Sweden': 145, 'Switzerland': 146, 'Syria': 147, 'TN': 148, 'TX': 149,
'Taiwan': 150, 'Thailand': 151, 'The Bahamas': 152, 'Tunisia': 153, 'Turkey': 154,
'Tuvalu': 155, 'UT': 156, 'Uganda': 157, 'Ukraine': 158, 'United Arab Emirates': 159,
'United Kingdom': 160, 'Uruguay': 161, 'Uzbekistan': 162, 'VA': 163, 'VT': 164,
'Vatican City': 165, 'Vietnam': 166, 'WA': 167, 'WI': 168, 'WV': 169, 'WY': 170,
'Yemen': 171, 'Zimbabwe': 172
}
def predict_fraud(transactions):
try:
df = pd.DataFrame(transactions, columns=[
'Zipcode', 'Merchant_State_Code', 'User_Frequency_Per_Day',
'Time_Difference_Hours', 'Merchant_Category_Code',
'Merchant_City_Code', 'Transaction_Amount'
])
node_features = torch.tensor(df.values, dtype=torch.float).to(device)
edge_index = torch.empty((2, 0), dtype=torch.long).to(device)
if len(df) > 1:
zipcodes = node_features[:, 0].cpu().numpy()
edge_list = []
zipcode_threshold = 1000
for i in range(len(df)):
for j in range(i + 1, len(df)):
if abs(zipcodes[i] - zipcodes[j]) < zipcode_threshold:
edge_list.append([i, j])
edge_list.append([j, i])
if edge_list:
edge_index = torch.tensor(edge_list, dtype=torch.long).t().contiguous().to(device)
graph_data = Data(x=node_features, edge_index=edge_index).to(device)
if model is None:
raise ValueError("Model not loaded. Check if fraud_gnn_model.pth exists.")
with torch.no_grad():
out = model(graph_data)
out = torch.atleast_1d(out)
pred_binary = (out > threshold).float().cpu().numpy()
pred_proba = out.cpu().numpy()
pred_binary = np.atleast_1d(pred_binary)
pred_proba = np.atleast_1d(pred_proba)
return pred_binary, pred_proba
except Exception as e:
st.error(f"Error in predict_fraud: {e}")
return None, None
# Custom CSS for highly compact, eye-catching design
st.markdown("""
<style>
@import url('https://fonts.googleapis.com/css2?family=Poppins:wght@400;600&display=swap');
@import url('https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.0/css/all.min.css');
@keyframes glow {
0% { box-shadow: 0 0 5px rgba(52, 152, 219, 0.5); }
50% { box-shadow: 0 0 15px rgba(52, 152, 219, 0.8); }
100% { box-shadow: 0 0 5px rgba(52, 152, 219, 0.5); }
}
@keyframes icon-pulse {
0% { transform: scale(1); }
50% { transform: scale(1.1); }
100% { transform: scale(1); }
}
.stApp {
background: #ffffff;
max-width: 400px;
margin: 10px auto;
padding: 10px;
font-family: 'Poppins', sans-serif;
border-radius: 10px;
box-shadow: 0 6px 20px rgba(0, 0, 0, 0.1);
border: 2px solid transparent;
animation: glow 3s infinite;
}
/* Alternative Pastel Gradient Design (uncomment to use) */
/*
.stApp {
background: linear-gradient(135deg, #e6f0fa, #f3e5f5);
max-width: 400px;
margin: 10px auto;
padding: 10px;
font-family: 'Poppins', sans-serif;
border-radius: 10px;
box-shadow: 0 6px 20px rgba(0, 0, 0, 0.1);
border: 2px solid transparent;
animation: glow 3s infinite;
}
*/
.stTextInput > div > div > input, .stNumberInput > div > div > input, .stSelectbox > div > div > select {
padding: 5px;
border: 1px solid #ddd;
border-radius: 5px;
font-size: 0.8rem;
background: #f9f9f9;
transition: border-color 0.3s, box-shadow 0.3s;
}
.stTextInput > div > div > input:focus, .stNumberInput > div > div > input:focus, .stSelectbox > div > div > select:focus {
outline: none;
border-color: #3498db;
box-shadow: 0 0 6px rgba(52, 152, 219, 0.7);
}
.stSelectbox > div > div > select {
appearance: none;
background: #f9f9f9 url('data:image/svg+xml;utf8,<svg xmlns="http://www.w3.org/2000/svg" width="10" height="10" viewBox="0 0 24 24"><path fill="%23333" d="M7 10l5 5 5-5z"/></svg>') no-repeat right 8px center;
}
.stButton > button {
padding: 6px;
background: linear-gradient(45deg, #3498db, #ff6f61);
color: white;
border: none;
border-radius: 5px;
font-size: 0.85rem;
font-weight: 600;
width: 100%;
transition: transform 0.2s, box-shadow 0.3s;
}
.stButton > button:hover {
transform: translateY(-2px);
box-shadow: 0 4px 12px rgba(255, 111, 97, 0.5);
}
.stButton > button:active {
transform: translateY(0);
}
.result-box {
background: #f1f3f5;
padding: 8px;
border-radius: 6px;
text-align: center;
margin-top: 8px;
border: 1px solid #ddd;
animation: glow 3s infinite;
}
.result-box h2 {
font-size: 1rem;
color: #2c3e50;
margin-bottom: 4px;
}
.result-box p {
font-size: 0.8rem;
color: #7f8c8d;
}
.fa-shield-alt {
animation: icon-pulse 2s infinite;
}
.form-label {
font-weight: 600;
font-size: 0.75rem;
color: #2c3e50;
margin-bottom: 3px;
display: flex;
align-items: center;
}
.form-label i {
color: #ff6f61;
margin-right: 5px;
transition: color 0.3s;
}
.form-label i:hover {
color: #3498db;
}
.stForm {
display: flex;
flex-direction: column;
gap: 6px;
}
</style>
""", unsafe_allow_html=True)
# Streamlit UI
st.markdown("""
<h1 style='text-align: center; color: #2c3e50; font-size: 1.5rem; margin-bottom: 8px;'>
<i class='fas fa-shield-alt' style='color: #ff6f61; margin-right: 8px;'></i>
FraudShield
</h1>
<p style='text-align: center; font-size: 0.8rem; color: #555; margin-bottom: 8px; line-height: 1.4;'>
Enter transaction details to detect fraud. Provide accurate zip code, merchant details, and amount.
</p>
""", unsafe_allow_html=True)
with st.form(key="fraud_form"):
st.markdown("<div class='form-label'><i class='fas fa-map-marker-alt'></i>Zipcode</div>", unsafe_allow_html=True)
zipcode = st.number_input("", value=91750.0, step=0.01, format="%.2f", key="zipcode")
st.markdown("<div class='form-label'><i class='fas fa-globe'></i>Merchant State</div>", unsafe_allow_html=True)
merchant_state = st.selectbox("", sorted(state_mapping.keys()), index=sorted(state_mapping.keys()).index("TX"), key="state")
st.markdown("<div class='form-label'><i class='fas fa-user-clock'></i>User Frequency Per Day</div>", unsafe_allow_html=True)
user_freq = st.number_input("", value=1.0, step=0.01, format="%.2f", key="freq")
st.markdown("<div class='form-label'><i class='fas fa-hourglass-half'></i>Time Difference (Hours)</div>", unsafe_allow_html=True)
time_diff = st.number_input("", value=16601.95, step=0.01, format="%.2f", key="time")
st.markdown("<div class='form-label'><i class='fas fa-store'></i>Merchant Category Code</div>", unsafe_allow_html=True)
merchant_category = st.number_input("", value=5912.0, step=0.01, format="%.2f", key="category")
st.markdown("<div class='form-label'><i class='fas fa-city'></i>Merchant City</div>", unsafe_allow_html=True)
merchant_city = st.selectbox("", sorted(city_mapping.keys()), index=sorted(city_mapping.keys()).index("Houston"), key="city")
st.markdown("<div class='form-label'><i class='fas fa-dollar-sign'></i>Transaction Amount</div>", unsafe_allow_html=True)
transaction_amount = st.number_input("", value=128.35, step=0.01, format="%.2f", key="amount")
submit_button = st.form_submit_button("Predict Fraud", use_container_width=True)
if submit_button:
try:
if not all([zipcode, user_freq, time_diff, merchant_category, transaction_amount]):
st.error("All fields are required.")
elif merchant_state not in state_mapping:
st.error(f"Invalid Merchant State: {merchant_state}")
elif merchant_city not in city_mapping:
st.error(f"Invalid Merchant City: {merchant_city}")
else:
transaction = {
'Zipcode': float(zipcode),
'Merchant_State_Code': int(state_mapping[merchant_state]),
'User_Frequency_Per_Day': float(user_freq),
'Time_Difference_Hours': float(time_diff),
'Merchant_Category_Code': float(merchant_category),
'Merchant_City_Code': int(city_mapping[merchant_city]),
'Transaction_Amount': float(transaction_amount)
}
transactions = [list(transaction.values())]
predictions, probabilities = predict_fraud(transactions)
if predictions is None or probabilities is None:
st.error("Prediction failed. Check server logs for details.")
else:
result = 'Fraud' if predictions[0] == 1 else 'Not Fraud'
st.markdown(f"""
<div class='result-box'>
<h2>Transaction: {result}</h2>
<p>Probability of Fraud: {probabilities[0]:.4f}</p>
</div>
""", unsafe_allow_html=True)
except Exception as e:
st.error(f"Error: Invalid input - {str(e)}") |