Upload 2 files
Browse files- main.py +321 -0
- requirements.txt +5 -2
main.py
ADDED
@@ -0,0 +1,321 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from torch_geometric.nn import GATConv
|
8 |
+
from torch_geometric.data import Data
|
9 |
+
import os
|
10 |
+
|
11 |
+
# Define FraudGNN class
|
12 |
+
class FraudGNN(nn.Module):
|
13 |
+
def __init__(self, input_dim, hidden_dim, output_dim):
|
14 |
+
super(FraudGNN, self).__init__()
|
15 |
+
self.conv1 = GATConv(input_dim, hidden_dim, heads=4, dropout=0.3)
|
16 |
+
self.conv2 = GATConv(hidden_dim * 4, hidden_dim, heads=1, dropout=0.3)
|
17 |
+
self.fc = nn.Linear(hidden_dim, output_dim)
|
18 |
+
|
19 |
+
def forward(self, data):
|
20 |
+
x, edge_index = data.x, data.edge_index
|
21 |
+
x = F.relu(self.conv1(x, edge_index))
|
22 |
+
x = F.dropout(x, p=0.3, training=self.training)
|
23 |
+
x = F.relu(self.conv2(x, edge_index))
|
24 |
+
x = self.fc(x)
|
25 |
+
return torch.sigmoid(x).squeeze()
|
26 |
+
|
27 |
+
# Device configuration
|
28 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
29 |
+
|
30 |
+
# Load model and threshold
|
31 |
+
try:
|
32 |
+
model_path = 'fraud_gnn_model.pth'
|
33 |
+
threshold_path = 'optimal_threshold.txt'
|
34 |
+
|
35 |
+
if not os.path.exists(model_path):
|
36 |
+
raise FileNotFoundError(f"Model file {model_path} not found.")
|
37 |
+
if not os.path.exists(threshold_path):
|
38 |
+
raise FileNotFoundError(f"Threshold file {threshold_path} not found.")
|
39 |
+
|
40 |
+
model = FraudGNN(input_dim=7, hidden_dim=16, output_dim=1).to(device)
|
41 |
+
model.load_state_dict(torch.load(model_path, map_location=device))
|
42 |
+
model.eval()
|
43 |
+
|
44 |
+
with open(threshold_path, 'r') as f:
|
45 |
+
threshold = float(f.read())
|
46 |
+
except Exception as e:
|
47 |
+
st.error(f"Error loading model or threshold: {e}")
|
48 |
+
model = None
|
49 |
+
threshold = 0.5
|
50 |
+
|
51 |
+
# City and state mappings
|
52 |
+
city_mapping = {
|
53 |
+
'Atlanta': 0, 'Bronx': 1, 'Brooklyn': 2, 'Chicago': 3, 'Dallas': 4, 'Houston': 5,
|
54 |
+
'Indianapolis': 6, 'Las Vegas': 7, 'Los Angeles': 8, 'Louisville': 9, 'Miami': 10,
|
55 |
+
'Minneapolis': 11, 'New York': 12, 'ONLINE': 13, 'Orlando': 14, 'Philadelphia': 15,
|
56 |
+
'San Antonio': 16, 'San Diego': 17, 'San Francisco': 18, 'Tucson': 19, 'other': 20
|
57 |
+
}
|
58 |
+
state_mapping = {
|
59 |
+
'AK': 0, 'AL': 1, 'AR': 2, 'AZ': 3, 'Algeria': 4, 'Antigua and Barbuda': 5, 'Argentina': 6,
|
60 |
+
'Aruba': 7, 'Australia': 8, 'Austria': 9, 'Azerbaijan': 10, 'Bahrain': 11, 'Bangladesh': 12,
|
61 |
+
'Barbados': 13, 'Belarus': 14, 'Belgium': 15, 'Belize': 16, 'Bosnia and Herzegovina': 17,
|
62 |
+
'Brazil': 18, 'CA': 19, 'CO': 20, 'CT': 21, 'Cabo Verde': 22, 'Cambodia': 23, 'Canada': 24,
|
63 |
+
'Central African Republic': 25, 'Chile': 26, 'China': 27, 'Colombia': 28, 'Costa Rica': 29,
|
64 |
+
"Cote d'Ivoire": 30, 'Croatia': 31, 'Czech Republic': 32, 'DC': 33, 'DE': 34, 'Denmark': 35,
|
65 |
+
'Dominica': 36, 'Dominican Republic': 37, 'East Timor (Timor-Leste)': 38, 'Ecuador': 39,
|
66 |
+
'Egypt': 40, 'Eritrea': 41, 'Estonia': 42, 'FL': 43, 'Fiji': 44, 'Finland': 45, 'France': 46,
|
67 |
+
'GA': 47, 'Georgia': 48, 'Germany': 49, 'Ghana': 50, 'Greece': 51, 'Guatemala': 52,
|
68 |
+
'Guyana': 53, 'HI': 54, 'Haiti': 55, 'Honduras': 56, 'Hong Kong': 57, 'Hungary': 58,
|
69 |
+
'IA': 59, 'ID': 60, 'IL': 61, 'IN': 62, 'Iceland': 63, 'India': 64, 'Indonesia': 65,
|
70 |
+
'Ireland': 66, 'Israel': 67, 'Italy': 68, 'Jamaica': 69, 'Japan': 70, 'Jordan': 71,
|
71 |
+
'KS': 72, 'KY': 73, 'Kenya': 74, 'Kosovo': 75, 'Kuwait': 76, 'LA': 77, 'Latvia': 78,
|
72 |
+
'Lebanon': 79, 'Liberia': 80, 'Lithuania': 81, 'Luxembourg': 82, 'MA': 83, 'MD': 84,
|
73 |
+
'ME': 85, 'MI': 86, 'MN': 87, 'MO': 88, 'MS': 89, 'MT': 90, 'Macedonia': 91,
|
74 |
+
'Malaysia': 92, 'Malta': 93, 'Mexico': 94, 'Moldova': 95, 'Monaco': 96, 'Morocco': 97,
|
75 |
+
'Mozambique': 98, 'Myanmar (Burma)': 99, 'NC': 100, 'ND': 101, 'NE': 102, 'NH': 103,
|
76 |
+
'NJ': 104, 'NM': 105, 'NV': 106, 'NY': 107, 'Nauru': 108, 'Netherlands': 109,
|
77 |
+
'New Zealand': 110, 'Nicaragua': 111, 'Niger': 112, 'Nigeria': 113, 'Norway': 114,
|
78 |
+
'OH': 115, 'OK': 116, 'OR': 117, 'Oman': 118, 'PA': 119, 'Pakistan': 120, 'Panama': 121,
|
79 |
+
'Peru': 122, 'Philippines': 123, 'Poland': 124, 'Portugal': 125, 'RI': 126, 'Romania': 127,
|
80 |
+
'Russia': 128, 'SC': 129, 'SD': 130, 'Saudi Arabia': 131, 'Senegal': 132, 'Serbia': 133,
|
81 |
+
'Seychelles': 134, 'Singapore': 135, 'Slovakia': 136, 'Slovenia': 137, 'Somalia': 138,
|
82 |
+
'South Africa': 139, 'South Korea': 140, 'Spain': 141, 'Sri Lanka': 142, 'Sudan': 143,
|
83 |
+
'Suriname': 144, 'Sweden': 145, 'Switzerland': 146, 'Syria': 147, 'TN': 148, 'TX': 149,
|
84 |
+
'Taiwan': 150, 'Thailand': 151, 'The Bahamas': 152, 'Tunisia': 153, 'Turkey': 154,
|
85 |
+
'Tuvalu': 155, 'UT': 156, 'Uganda': 157, 'Ukraine': 158, 'United Arab Emirates': 159,
|
86 |
+
'United Kingdom': 160, 'Uruguay': 161, 'Uzbekistan': 162, 'VA': 163, 'VT': 164,
|
87 |
+
'Vatican City': 165, 'Vietnam': 166, 'WA': 167, 'WI': 168, 'WV': 169, 'WY': 170,
|
88 |
+
'Yemen': 171, 'Zimbabwe': 172
|
89 |
+
}
|
90 |
+
|
91 |
+
def predict_fraud(transactions):
|
92 |
+
try:
|
93 |
+
df = pd.DataFrame(transactions, columns=[
|
94 |
+
'Zipcode', 'Merchant_State_Code', 'User_Frequency_Per_Day',
|
95 |
+
'Time_Difference_Hours', 'Merchant_Category_Code',
|
96 |
+
'Merchant_City_Code', 'Transaction_Amount'
|
97 |
+
])
|
98 |
+
node_features = torch.tensor(df.values, dtype=torch.float).to(device)
|
99 |
+
|
100 |
+
edge_index = torch.empty((2, 0), dtype=torch.long).to(device)
|
101 |
+
|
102 |
+
if len(df) > 1:
|
103 |
+
zipcodes = node_features[:, 0].cpu().numpy()
|
104 |
+
edge_list = []
|
105 |
+
zipcode_threshold = 1000
|
106 |
+
for i in range(len(df)):
|
107 |
+
for j in range(i + 1, len(df)):
|
108 |
+
if abs(zipcodes[i] - zipcodes[j]) < zipcode_threshold:
|
109 |
+
edge_list.append([i, j])
|
110 |
+
edge_list.append([j, i])
|
111 |
+
if edge_list:
|
112 |
+
edge_index = torch.tensor(edge_list, dtype=torch.long).t().contiguous().to(device)
|
113 |
+
|
114 |
+
graph_data = Data(x=node_features, edge_index=edge_index).to(device)
|
115 |
+
|
116 |
+
if model is None:
|
117 |
+
raise ValueError("Model not loaded. Check if fraud_gnn_model.pth exists.")
|
118 |
+
|
119 |
+
with torch.no_grad():
|
120 |
+
out = model(graph_data)
|
121 |
+
out = torch.atleast_1d(out)
|
122 |
+
pred_binary = (out > threshold).float().cpu().numpy()
|
123 |
+
pred_proba = out.cpu().numpy()
|
124 |
+
pred_binary = np.atleast_1d(pred_binary)
|
125 |
+
pred_proba = np.atleast_1d(pred_proba)
|
126 |
+
|
127 |
+
return pred_binary, pred_proba
|
128 |
+
except Exception as e:
|
129 |
+
st.error(f"Error in predict_fraud: {e}")
|
130 |
+
return None, None
|
131 |
+
|
132 |
+
# Custom CSS for eye-catching design with further reduced form height
|
133 |
+
st.markdown("""
|
134 |
+
<style>
|
135 |
+
@import url('https://fonts.googleapis.com/css2?family=Poppins:wght@400;600&display=swap');
|
136 |
+
@import url('https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.0/css/all.min.css');
|
137 |
+
|
138 |
+
@keyframes glow {
|
139 |
+
0% { box-shadow: 0 0 5px rgba(52, 152, 219, 0.5); }
|
140 |
+
50% { box-shadow: 0 0 15px rgba(52, 152, 219, 0.8); }
|
141 |
+
100% { box-shadow: 0 0 5px rgba(52, 152, 219, 0.5); }
|
142 |
+
}
|
143 |
+
@keyframes icon-pulse {
|
144 |
+
0% { transform: scale(1); }
|
145 |
+
50% { transform: scale(1.1); }
|
146 |
+
100% { transform: scale(1); }
|
147 |
+
}
|
148 |
+
|
149 |
+
.stApp {
|
150 |
+
background: #ffffff;
|
151 |
+
max-width: 400px;
|
152 |
+
margin: 10px auto;
|
153 |
+
padding: 10px;
|
154 |
+
font-family: 'Poppins', sans-serif;
|
155 |
+
border-radius: 10px;
|
156 |
+
box-shadow: 0 6px 20px rgba(0, 0, 0, 0.1);
|
157 |
+
border: 2px solid transparent;
|
158 |
+
animation: glow 3s infinite;
|
159 |
+
}
|
160 |
+
/* Alternative Pastel Gradient Design (uncomment to use) */
|
161 |
+
/*
|
162 |
+
.stApp {
|
163 |
+
background: linear-gradient(135deg, #e6f0fa, #f3e5f5);
|
164 |
+
max-width: 400px;
|
165 |
+
margin: 10px auto;
|
166 |
+
padding: 10px;
|
167 |
+
font-family: 'Poppins', sans-serif;
|
168 |
+
border-radius: 10px;
|
169 |
+
box-shadow: 0 6px 20px rgba(0, 0, 0, 0.1);
|
170 |
+
border: 2px solid transparent;
|
171 |
+
animation: glow 3s infinite;
|
172 |
+
}
|
173 |
+
*/
|
174 |
+
.stTextInput > div > div > input, .stNumberInput > div > div > input, .stSelectbox > div > div > select {
|
175 |
+
padding: 5px;
|
176 |
+
border: 1px solid #ddd;
|
177 |
+
border-radius: 5px;
|
178 |
+
font-size: 0.8rem;
|
179 |
+
background: #f9f9f9;
|
180 |
+
transition: border-color 0.3s, box-shadow 0.3s;
|
181 |
+
}
|
182 |
+
.stTextInput > div > div > input:focus, .stNumberInput > div > div > input:focus, .stSelectbox > div > div > select:focus {
|
183 |
+
outline: none;
|
184 |
+
border-color: #3498db;
|
185 |
+
box-shadow: 0 0 6px rgba(52, 152, 219, 0.7);
|
186 |
+
}
|
187 |
+
.stSelectbox > div > div > select {
|
188 |
+
appearance: none;
|
189 |
+
background: #f9f9f9 url('data:image/svg+xml;utf8,<svg xmlns="http://www.w3.org/2000/svg" width="10" height="10" viewBox="0 0 24 24"><path fill="%23333" d="M7 10l5 5 5-5z"/></svg>') no-repeat right 8px center;
|
190 |
+
}
|
191 |
+
.stButton > button {
|
192 |
+
padding: 6px;
|
193 |
+
background: linear-gradient(45deg, #3498db, #ff6f61);
|
194 |
+
color: white;
|
195 |
+
border: none;
|
196 |
+
border-radius: 5px;
|
197 |
+
font-size: 0.85rem;
|
198 |
+
font-weight: 600;
|
199 |
+
width: 100%;
|
200 |
+
transition: transform 0.2s, box-shadow 0.3s;
|
201 |
+
}
|
202 |
+
.stButton > button:hover {
|
203 |
+
transform: translateY(-2px);
|
204 |
+
box-shadow: 0 4px 12px rgba(255, 111, 97, 0.5);
|
205 |
+
}
|
206 |
+
.stButton > button:active {
|
207 |
+
transform: translateY(0);
|
208 |
+
}
|
209 |
+
.result-box {
|
210 |
+
background: #f1f3f5;
|
211 |
+
padding: 8px;
|
212 |
+
border-radius: 6px;
|
213 |
+
text-align: center;
|
214 |
+
margin-top: 8px;
|
215 |
+
border: 1px solid #ddd;
|
216 |
+
animation: glow 3s infinite;
|
217 |
+
}
|
218 |
+
.result-box h2 {
|
219 |
+
font-size: 1rem;
|
220 |
+
color: #2c3e50;
|
221 |
+
margin-bottom: 4px;
|
222 |
+
}
|
223 |
+
.result-box p {
|
224 |
+
font-size: 0.8rem;
|
225 |
+
color: #7f8c8d;
|
226 |
+
}
|
227 |
+
.fa-shield-alt {
|
228 |
+
animation: icon-pulse 2s infinite;
|
229 |
+
}
|
230 |
+
.form-label {
|
231 |
+
font-weight: 600;
|
232 |
+
font-size: 0.75rem;
|
233 |
+
color: #2c3e50;
|
234 |
+
margin-bottom: 3px;
|
235 |
+
display: flex;
|
236 |
+
align-items: center;
|
237 |
+
}
|
238 |
+
.form-label i {
|
239 |
+
color: #ff6f61;
|
240 |
+
margin-right: 5px;
|
241 |
+
transition: color 0.3s;
|
242 |
+
}
|
243 |
+
.form-label i:hover {
|
244 |
+
color: #3498db;
|
245 |
+
}
|
246 |
+
.stForm {
|
247 |
+
display: flex;
|
248 |
+
flex-direction: column;
|
249 |
+
gap: 6px;
|
250 |
+
}
|
251 |
+
</style>
|
252 |
+
""", unsafe_allow_html=True)
|
253 |
+
|
254 |
+
# Streamlit UI
|
255 |
+
st.markdown("""
|
256 |
+
<h1 style='text-align: center; color: #2c3e50; font-size: 1.5rem; margin-bottom: 8px;'>
|
257 |
+
<i class='fas fa-shield-alt' style='color: #ff6f61; margin-right: 8px;'></i>
|
258 |
+
FraudShield
|
259 |
+
</h1>
|
260 |
+
<p style='text-align: center; font-size: 0.8rem; color: #555; margin-bottom: 8px; line-height: 1.4;'>
|
261 |
+
Enter transaction details to detect fraud. Provide accurate zip code, merchant details, and amount.
|
262 |
+
</p>
|
263 |
+
""", unsafe_allow_html=True)
|
264 |
+
|
265 |
+
with st.form(key="fraud_form"):
|
266 |
+
st.markdown("<div class='form-label'><i class='fas fa-map-marker-alt'></i>Zipcode</div>", unsafe_allow_html=True)
|
267 |
+
zipcode = st.number_input("", value=91750.0, step=0.01, format="%.2f", key="zipcode")
|
268 |
+
|
269 |
+
st.markdown("<div class='form-label'><i class='fas fa-globe'></i>Merchant State</div>", unsafe_allow_html=True)
|
270 |
+
merchant_state = st.selectbox("", sorted(state_mapping.keys()), index=sorted(state_mapping.keys()).index("TX"), key="state")
|
271 |
+
|
272 |
+
st.markdown("<div class='form-label'><i class='fas fa-user-clock'></i>User Frequency Per Day</div>", unsafe_allow_html=True)
|
273 |
+
user_freq = st.number_input("", value=1.0, step=0.01, format="%.2f", key="freq")
|
274 |
+
|
275 |
+
st.markdown("<div class='form-label'><i class='fas fa-hourglass-half'></i>Time Difference (Hours)</div>", unsafe_allow_html=True)
|
276 |
+
time_diff = st.number_input("", value=16601.95, step=0.01, format="%.2f", key="time")
|
277 |
+
|
278 |
+
st.markdown("<div class='form-label'><i class='fas fa-store'></i>Merchant Category Code</div>", unsafe_allow_html=True)
|
279 |
+
merchant_category = st.number_input("", value=5912.0, step=0.01, format="%.2f", key="category")
|
280 |
+
|
281 |
+
st.markdown("<div class='form-label'><i class='fas fa-city'></i>Merchant City</div>", unsafe_allow_html=True)
|
282 |
+
merchant_city = st.selectbox("", sorted(city_mapping.keys()), index=sorted(city_mapping.keys()).index("Houston"), key="city")
|
283 |
+
|
284 |
+
st.markdown("<div class='form-label'><i class='fas fa-dollar-sign'></i>Transaction Amount</div>", unsafe_allow_html=True)
|
285 |
+
transaction_amount = st.number_input("", value=128.35, step=0.01, format="%.2f", key="amount")
|
286 |
+
|
287 |
+
submit_button = st.form_submit_button("Predict Fraud", use_container_width=True)
|
288 |
+
|
289 |
+
if submit_button:
|
290 |
+
try:
|
291 |
+
if not all([zipcode, user_freq, time_diff, merchant_category, transaction_amount]):
|
292 |
+
st.error("All fields are required.")
|
293 |
+
elif merchant_state not in state_mapping:
|
294 |
+
st.error(f"Invalid Merchant State: {merchant_state}")
|
295 |
+
elif merchant_city not in city_mapping:
|
296 |
+
st.error(f"Invalid Merchant City: {merchant_city}")
|
297 |
+
else:
|
298 |
+
transaction = {
|
299 |
+
'Zipcode': float(zipcode),
|
300 |
+
'Merchant_State_Code': int(state_mapping[merchant_state]),
|
301 |
+
'User_Frequency_Per_Day': float(user_freq),
|
302 |
+
'Time_Difference_Hours': float(time_diff),
|
303 |
+
'Merchant_Category_Code': float(merchant_category),
|
304 |
+
'Merchant_City_Code': int(city_mapping[merchant_city]),
|
305 |
+
'Transaction_Amount': float(transaction_amount)
|
306 |
+
}
|
307 |
+
transactions = [list(transaction.values())]
|
308 |
+
predictions, probabilities = predict_fraud(transactions)
|
309 |
+
|
310 |
+
if predictions is None or probabilities is None:
|
311 |
+
st.error("Prediction failed. Check server logs for details.")
|
312 |
+
else:
|
313 |
+
result = 'Fraud' if predictions[0] == 1 else 'Not Fraud'
|
314 |
+
st.markdown(f"""
|
315 |
+
<div class='result-box'>
|
316 |
+
<h2>Transaction: {result}</h2>
|
317 |
+
<p>Probability of Fraud: {probabilities[0]:.4f}</p>
|
318 |
+
</div>
|
319 |
+
""", unsafe_allow_html=True)
|
320 |
+
except Exception as e:
|
321 |
+
st.error(f"Error: Invalid input - {str(e)}")
|
requirements.txt
CHANGED
@@ -1,3 +1,6 @@
|
|
1 |
-
|
2 |
-
|
|
|
|
|
|
|
3 |
streamlit
|
|
|
1 |
+
torch==2.6.0
|
2 |
+
numpy==1.26.4
|
3 |
+
pandas==2.2.3
|
4 |
+
flask
|
5 |
+
torch-geometric==2.6.1
|
6 |
streamlit
|