jarif commited on
Commit
f747807
·
verified ·
1 Parent(s): 8d8b374

Upload 2 files

Browse files
Files changed (2) hide show
  1. main.py +321 -0
  2. requirements.txt +5 -2
main.py ADDED
@@ -0,0 +1,321 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import numpy as np
4
+ import torch
5
+ import torch.nn as nn
6
+ import torch.nn.functional as F
7
+ from torch_geometric.nn import GATConv
8
+ from torch_geometric.data import Data
9
+ import os
10
+
11
+ # Define FraudGNN class
12
+ class FraudGNN(nn.Module):
13
+ def __init__(self, input_dim, hidden_dim, output_dim):
14
+ super(FraudGNN, self).__init__()
15
+ self.conv1 = GATConv(input_dim, hidden_dim, heads=4, dropout=0.3)
16
+ self.conv2 = GATConv(hidden_dim * 4, hidden_dim, heads=1, dropout=0.3)
17
+ self.fc = nn.Linear(hidden_dim, output_dim)
18
+
19
+ def forward(self, data):
20
+ x, edge_index = data.x, data.edge_index
21
+ x = F.relu(self.conv1(x, edge_index))
22
+ x = F.dropout(x, p=0.3, training=self.training)
23
+ x = F.relu(self.conv2(x, edge_index))
24
+ x = self.fc(x)
25
+ return torch.sigmoid(x).squeeze()
26
+
27
+ # Device configuration
28
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
29
+
30
+ # Load model and threshold
31
+ try:
32
+ model_path = 'fraud_gnn_model.pth'
33
+ threshold_path = 'optimal_threshold.txt'
34
+
35
+ if not os.path.exists(model_path):
36
+ raise FileNotFoundError(f"Model file {model_path} not found.")
37
+ if not os.path.exists(threshold_path):
38
+ raise FileNotFoundError(f"Threshold file {threshold_path} not found.")
39
+
40
+ model = FraudGNN(input_dim=7, hidden_dim=16, output_dim=1).to(device)
41
+ model.load_state_dict(torch.load(model_path, map_location=device))
42
+ model.eval()
43
+
44
+ with open(threshold_path, 'r') as f:
45
+ threshold = float(f.read())
46
+ except Exception as e:
47
+ st.error(f"Error loading model or threshold: {e}")
48
+ model = None
49
+ threshold = 0.5
50
+
51
+ # City and state mappings
52
+ city_mapping = {
53
+ 'Atlanta': 0, 'Bronx': 1, 'Brooklyn': 2, 'Chicago': 3, 'Dallas': 4, 'Houston': 5,
54
+ 'Indianapolis': 6, 'Las Vegas': 7, 'Los Angeles': 8, 'Louisville': 9, 'Miami': 10,
55
+ 'Minneapolis': 11, 'New York': 12, 'ONLINE': 13, 'Orlando': 14, 'Philadelphia': 15,
56
+ 'San Antonio': 16, 'San Diego': 17, 'San Francisco': 18, 'Tucson': 19, 'other': 20
57
+ }
58
+ state_mapping = {
59
+ 'AK': 0, 'AL': 1, 'AR': 2, 'AZ': 3, 'Algeria': 4, 'Antigua and Barbuda': 5, 'Argentina': 6,
60
+ 'Aruba': 7, 'Australia': 8, 'Austria': 9, 'Azerbaijan': 10, 'Bahrain': 11, 'Bangladesh': 12,
61
+ 'Barbados': 13, 'Belarus': 14, 'Belgium': 15, 'Belize': 16, 'Bosnia and Herzegovina': 17,
62
+ 'Brazil': 18, 'CA': 19, 'CO': 20, 'CT': 21, 'Cabo Verde': 22, 'Cambodia': 23, 'Canada': 24,
63
+ 'Central African Republic': 25, 'Chile': 26, 'China': 27, 'Colombia': 28, 'Costa Rica': 29,
64
+ "Cote d'Ivoire": 30, 'Croatia': 31, 'Czech Republic': 32, 'DC': 33, 'DE': 34, 'Denmark': 35,
65
+ 'Dominica': 36, 'Dominican Republic': 37, 'East Timor (Timor-Leste)': 38, 'Ecuador': 39,
66
+ 'Egypt': 40, 'Eritrea': 41, 'Estonia': 42, 'FL': 43, 'Fiji': 44, 'Finland': 45, 'France': 46,
67
+ 'GA': 47, 'Georgia': 48, 'Germany': 49, 'Ghana': 50, 'Greece': 51, 'Guatemala': 52,
68
+ 'Guyana': 53, 'HI': 54, 'Haiti': 55, 'Honduras': 56, 'Hong Kong': 57, 'Hungary': 58,
69
+ 'IA': 59, 'ID': 60, 'IL': 61, 'IN': 62, 'Iceland': 63, 'India': 64, 'Indonesia': 65,
70
+ 'Ireland': 66, 'Israel': 67, 'Italy': 68, 'Jamaica': 69, 'Japan': 70, 'Jordan': 71,
71
+ 'KS': 72, 'KY': 73, 'Kenya': 74, 'Kosovo': 75, 'Kuwait': 76, 'LA': 77, 'Latvia': 78,
72
+ 'Lebanon': 79, 'Liberia': 80, 'Lithuania': 81, 'Luxembourg': 82, 'MA': 83, 'MD': 84,
73
+ 'ME': 85, 'MI': 86, 'MN': 87, 'MO': 88, 'MS': 89, 'MT': 90, 'Macedonia': 91,
74
+ 'Malaysia': 92, 'Malta': 93, 'Mexico': 94, 'Moldova': 95, 'Monaco': 96, 'Morocco': 97,
75
+ 'Mozambique': 98, 'Myanmar (Burma)': 99, 'NC': 100, 'ND': 101, 'NE': 102, 'NH': 103,
76
+ 'NJ': 104, 'NM': 105, 'NV': 106, 'NY': 107, 'Nauru': 108, 'Netherlands': 109,
77
+ 'New Zealand': 110, 'Nicaragua': 111, 'Niger': 112, 'Nigeria': 113, 'Norway': 114,
78
+ 'OH': 115, 'OK': 116, 'OR': 117, 'Oman': 118, 'PA': 119, 'Pakistan': 120, 'Panama': 121,
79
+ 'Peru': 122, 'Philippines': 123, 'Poland': 124, 'Portugal': 125, 'RI': 126, 'Romania': 127,
80
+ 'Russia': 128, 'SC': 129, 'SD': 130, 'Saudi Arabia': 131, 'Senegal': 132, 'Serbia': 133,
81
+ 'Seychelles': 134, 'Singapore': 135, 'Slovakia': 136, 'Slovenia': 137, 'Somalia': 138,
82
+ 'South Africa': 139, 'South Korea': 140, 'Spain': 141, 'Sri Lanka': 142, 'Sudan': 143,
83
+ 'Suriname': 144, 'Sweden': 145, 'Switzerland': 146, 'Syria': 147, 'TN': 148, 'TX': 149,
84
+ 'Taiwan': 150, 'Thailand': 151, 'The Bahamas': 152, 'Tunisia': 153, 'Turkey': 154,
85
+ 'Tuvalu': 155, 'UT': 156, 'Uganda': 157, 'Ukraine': 158, 'United Arab Emirates': 159,
86
+ 'United Kingdom': 160, 'Uruguay': 161, 'Uzbekistan': 162, 'VA': 163, 'VT': 164,
87
+ 'Vatican City': 165, 'Vietnam': 166, 'WA': 167, 'WI': 168, 'WV': 169, 'WY': 170,
88
+ 'Yemen': 171, 'Zimbabwe': 172
89
+ }
90
+
91
+ def predict_fraud(transactions):
92
+ try:
93
+ df = pd.DataFrame(transactions, columns=[
94
+ 'Zipcode', 'Merchant_State_Code', 'User_Frequency_Per_Day',
95
+ 'Time_Difference_Hours', 'Merchant_Category_Code',
96
+ 'Merchant_City_Code', 'Transaction_Amount'
97
+ ])
98
+ node_features = torch.tensor(df.values, dtype=torch.float).to(device)
99
+
100
+ edge_index = torch.empty((2, 0), dtype=torch.long).to(device)
101
+
102
+ if len(df) > 1:
103
+ zipcodes = node_features[:, 0].cpu().numpy()
104
+ edge_list = []
105
+ zipcode_threshold = 1000
106
+ for i in range(len(df)):
107
+ for j in range(i + 1, len(df)):
108
+ if abs(zipcodes[i] - zipcodes[j]) < zipcode_threshold:
109
+ edge_list.append([i, j])
110
+ edge_list.append([j, i])
111
+ if edge_list:
112
+ edge_index = torch.tensor(edge_list, dtype=torch.long).t().contiguous().to(device)
113
+
114
+ graph_data = Data(x=node_features, edge_index=edge_index).to(device)
115
+
116
+ if model is None:
117
+ raise ValueError("Model not loaded. Check if fraud_gnn_model.pth exists.")
118
+
119
+ with torch.no_grad():
120
+ out = model(graph_data)
121
+ out = torch.atleast_1d(out)
122
+ pred_binary = (out > threshold).float().cpu().numpy()
123
+ pred_proba = out.cpu().numpy()
124
+ pred_binary = np.atleast_1d(pred_binary)
125
+ pred_proba = np.atleast_1d(pred_proba)
126
+
127
+ return pred_binary, pred_proba
128
+ except Exception as e:
129
+ st.error(f"Error in predict_fraud: {e}")
130
+ return None, None
131
+
132
+ # Custom CSS for eye-catching design with further reduced form height
133
+ st.markdown("""
134
+ <style>
135
+ @import url('https://fonts.googleapis.com/css2?family=Poppins:wght@400;600&display=swap');
136
+ @import url('https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.0/css/all.min.css');
137
+
138
+ @keyframes glow {
139
+ 0% { box-shadow: 0 0 5px rgba(52, 152, 219, 0.5); }
140
+ 50% { box-shadow: 0 0 15px rgba(52, 152, 219, 0.8); }
141
+ 100% { box-shadow: 0 0 5px rgba(52, 152, 219, 0.5); }
142
+ }
143
+ @keyframes icon-pulse {
144
+ 0% { transform: scale(1); }
145
+ 50% { transform: scale(1.1); }
146
+ 100% { transform: scale(1); }
147
+ }
148
+
149
+ .stApp {
150
+ background: #ffffff;
151
+ max-width: 400px;
152
+ margin: 10px auto;
153
+ padding: 10px;
154
+ font-family: 'Poppins', sans-serif;
155
+ border-radius: 10px;
156
+ box-shadow: 0 6px 20px rgba(0, 0, 0, 0.1);
157
+ border: 2px solid transparent;
158
+ animation: glow 3s infinite;
159
+ }
160
+ /* Alternative Pastel Gradient Design (uncomment to use) */
161
+ /*
162
+ .stApp {
163
+ background: linear-gradient(135deg, #e6f0fa, #f3e5f5);
164
+ max-width: 400px;
165
+ margin: 10px auto;
166
+ padding: 10px;
167
+ font-family: 'Poppins', sans-serif;
168
+ border-radius: 10px;
169
+ box-shadow: 0 6px 20px rgba(0, 0, 0, 0.1);
170
+ border: 2px solid transparent;
171
+ animation: glow 3s infinite;
172
+ }
173
+ */
174
+ .stTextInput > div > div > input, .stNumberInput > div > div > input, .stSelectbox > div > div > select {
175
+ padding: 5px;
176
+ border: 1px solid #ddd;
177
+ border-radius: 5px;
178
+ font-size: 0.8rem;
179
+ background: #f9f9f9;
180
+ transition: border-color 0.3s, box-shadow 0.3s;
181
+ }
182
+ .stTextInput > div > div > input:focus, .stNumberInput > div > div > input:focus, .stSelectbox > div > div > select:focus {
183
+ outline: none;
184
+ border-color: #3498db;
185
+ box-shadow: 0 0 6px rgba(52, 152, 219, 0.7);
186
+ }
187
+ .stSelectbox > div > div > select {
188
+ appearance: none;
189
+ background: #f9f9f9 url('data:image/svg+xml;utf8,<svg xmlns="http://www.w3.org/2000/svg" width="10" height="10" viewBox="0 0 24 24"><path fill="%23333" d="M7 10l5 5 5-5z"/></svg>') no-repeat right 8px center;
190
+ }
191
+ .stButton > button {
192
+ padding: 6px;
193
+ background: linear-gradient(45deg, #3498db, #ff6f61);
194
+ color: white;
195
+ border: none;
196
+ border-radius: 5px;
197
+ font-size: 0.85rem;
198
+ font-weight: 600;
199
+ width: 100%;
200
+ transition: transform 0.2s, box-shadow 0.3s;
201
+ }
202
+ .stButton > button:hover {
203
+ transform: translateY(-2px);
204
+ box-shadow: 0 4px 12px rgba(255, 111, 97, 0.5);
205
+ }
206
+ .stButton > button:active {
207
+ transform: translateY(0);
208
+ }
209
+ .result-box {
210
+ background: #f1f3f5;
211
+ padding: 8px;
212
+ border-radius: 6px;
213
+ text-align: center;
214
+ margin-top: 8px;
215
+ border: 1px solid #ddd;
216
+ animation: glow 3s infinite;
217
+ }
218
+ .result-box h2 {
219
+ font-size: 1rem;
220
+ color: #2c3e50;
221
+ margin-bottom: 4px;
222
+ }
223
+ .result-box p {
224
+ font-size: 0.8rem;
225
+ color: #7f8c8d;
226
+ }
227
+ .fa-shield-alt {
228
+ animation: icon-pulse 2s infinite;
229
+ }
230
+ .form-label {
231
+ font-weight: 600;
232
+ font-size: 0.75rem;
233
+ color: #2c3e50;
234
+ margin-bottom: 3px;
235
+ display: flex;
236
+ align-items: center;
237
+ }
238
+ .form-label i {
239
+ color: #ff6f61;
240
+ margin-right: 5px;
241
+ transition: color 0.3s;
242
+ }
243
+ .form-label i:hover {
244
+ color: #3498db;
245
+ }
246
+ .stForm {
247
+ display: flex;
248
+ flex-direction: column;
249
+ gap: 6px;
250
+ }
251
+ </style>
252
+ """, unsafe_allow_html=True)
253
+
254
+ # Streamlit UI
255
+ st.markdown("""
256
+ <h1 style='text-align: center; color: #2c3e50; font-size: 1.5rem; margin-bottom: 8px;'>
257
+ <i class='fas fa-shield-alt' style='color: #ff6f61; margin-right: 8px;'></i>
258
+ FraudShield
259
+ </h1>
260
+ <p style='text-align: center; font-size: 0.8rem; color: #555; margin-bottom: 8px; line-height: 1.4;'>
261
+ Enter transaction details to detect fraud. Provide accurate zip code, merchant details, and amount.
262
+ </p>
263
+ """, unsafe_allow_html=True)
264
+
265
+ with st.form(key="fraud_form"):
266
+ st.markdown("<div class='form-label'><i class='fas fa-map-marker-alt'></i>Zipcode</div>", unsafe_allow_html=True)
267
+ zipcode = st.number_input("", value=91750.0, step=0.01, format="%.2f", key="zipcode")
268
+
269
+ st.markdown("<div class='form-label'><i class='fas fa-globe'></i>Merchant State</div>", unsafe_allow_html=True)
270
+ merchant_state = st.selectbox("", sorted(state_mapping.keys()), index=sorted(state_mapping.keys()).index("TX"), key="state")
271
+
272
+ st.markdown("<div class='form-label'><i class='fas fa-user-clock'></i>User Frequency Per Day</div>", unsafe_allow_html=True)
273
+ user_freq = st.number_input("", value=1.0, step=0.01, format="%.2f", key="freq")
274
+
275
+ st.markdown("<div class='form-label'><i class='fas fa-hourglass-half'></i>Time Difference (Hours)</div>", unsafe_allow_html=True)
276
+ time_diff = st.number_input("", value=16601.95, step=0.01, format="%.2f", key="time")
277
+
278
+ st.markdown("<div class='form-label'><i class='fas fa-store'></i>Merchant Category Code</div>", unsafe_allow_html=True)
279
+ merchant_category = st.number_input("", value=5912.0, step=0.01, format="%.2f", key="category")
280
+
281
+ st.markdown("<div class='form-label'><i class='fas fa-city'></i>Merchant City</div>", unsafe_allow_html=True)
282
+ merchant_city = st.selectbox("", sorted(city_mapping.keys()), index=sorted(city_mapping.keys()).index("Houston"), key="city")
283
+
284
+ st.markdown("<div class='form-label'><i class='fas fa-dollar-sign'></i>Transaction Amount</div>", unsafe_allow_html=True)
285
+ transaction_amount = st.number_input("", value=128.35, step=0.01, format="%.2f", key="amount")
286
+
287
+ submit_button = st.form_submit_button("Predict Fraud", use_container_width=True)
288
+
289
+ if submit_button:
290
+ try:
291
+ if not all([zipcode, user_freq, time_diff, merchant_category, transaction_amount]):
292
+ st.error("All fields are required.")
293
+ elif merchant_state not in state_mapping:
294
+ st.error(f"Invalid Merchant State: {merchant_state}")
295
+ elif merchant_city not in city_mapping:
296
+ st.error(f"Invalid Merchant City: {merchant_city}")
297
+ else:
298
+ transaction = {
299
+ 'Zipcode': float(zipcode),
300
+ 'Merchant_State_Code': int(state_mapping[merchant_state]),
301
+ 'User_Frequency_Per_Day': float(user_freq),
302
+ 'Time_Difference_Hours': float(time_diff),
303
+ 'Merchant_Category_Code': float(merchant_category),
304
+ 'Merchant_City_Code': int(city_mapping[merchant_city]),
305
+ 'Transaction_Amount': float(transaction_amount)
306
+ }
307
+ transactions = [list(transaction.values())]
308
+ predictions, probabilities = predict_fraud(transactions)
309
+
310
+ if predictions is None or probabilities is None:
311
+ st.error("Prediction failed. Check server logs for details.")
312
+ else:
313
+ result = 'Fraud' if predictions[0] == 1 else 'Not Fraud'
314
+ st.markdown(f"""
315
+ <div class='result-box'>
316
+ <h2>Transaction: {result}</h2>
317
+ <p>Probability of Fraud: {probabilities[0]:.4f}</p>
318
+ </div>
319
+ """, unsafe_allow_html=True)
320
+ except Exception as e:
321
+ st.error(f"Error: Invalid input - {str(e)}")
requirements.txt CHANGED
@@ -1,3 +1,6 @@
1
- altair
2
- pandas
 
 
 
3
  streamlit
 
1
+ torch==2.6.0
2
+ numpy==1.26.4
3
+ pandas==2.2.3
4
+ flask
5
+ torch-geometric==2.6.1
6
  streamlit