jarif's picture
Upload streamlit_app.py
e52cd01 verified
import streamlit as st
import numpy as np
import pandas as pd
import plotly.express as px
import pickle
from tensorflow.keras.models import load_model
import os
# Streamlit page configuration
st.set_page_config(
page_title="Power Consumption Predictor",
layout="centered",
initial_sidebar_state="collapsed"
)
# Custom CSS for white background and black text/borders
st.markdown("""
<style>
@import url('https://fonts.googleapis.com/css2?family=Roboto:wght@400;700&display=swap');
.main {background-color: #ffffff;}
.stTitle {font-family: 'Roboto', sans-serif; text-align: center; margin-bottom: 10px; font-size: 32px; font-weight: 700;}
.stSubheader {font-family: 'Roboto', sans-serif; font-size: 22px; font-weight: 700; margin-top: 10px; margin-bottom: 10px;}
.stMarkdown {font-family: 'Roboto', sans-serif; font-size: 16px;}
.stDataFrame {
background-color: #ffffff;
border-radius: 12px;
padding: 15px;
border: 1px solid #000000;
}
.stButton>button {
background-color: #ffffff;
color: #000000;
border-radius: 10px;
padding: 12px 30px;
font-size: 18px;
font-family: 'Roboto', sans-serif;
font-weight: 700;
display: block;
margin: 15px auto;
border: 2px solid #000000;
}
.stButton>button:hover {
background-color: #f0f0f0;
}
.stNumberInput label {
font-family: 'Roboto', sans-serif;
font-weight: 700;
font-size: 16px;
}
.stNumberInput input {
background-color: #ffffff;
color: #000000;
border: 2px solid #000000;
border-radius: 8px;
padding: 10px;
font-family: 'Roboto', sans-serif;
font-size: 14px;
}
.stNumberInput input:focus {
outline: none;
border: 2px solid #000000;
}
</style>
""", unsafe_allow_html=True)
# Robust file loading
try:
# Try root directory first (Hugging Face Spaces working directory)
model_path = 'my_model.keras'
scaler_x_path = 'scaler_X.pkl'
scaler_y_path = 'scaler_y.pkl'
# Fallback: Try relative to src/ (if files are in src/)
if not os.path.exists(model_path):
model_path = os.path.join(os.path.dirname(__file__), 'my_model.keras')
if not os.path.exists(scaler_x_path):
scaler_x_path = os.path.join(os.path.dirname(__file__), 'scaler_X.pkl')
if not os.path.exists(scaler_y_path):
scaler_y_path = os.path.join(os.path.dirname(__file__), 'scaler_y.pkl')
# Alternative: If files are in a 'models/' folder (uncomment if applicable)
# model_path = os.path.join(os.path.dirname(__file__), '..', 'models', 'my_model.keras')
# scaler_x_path = os.path.join(os.path.dirname(__file__), '..', 'models', 'scaler_X.pkl')
# scaler_y_path = os.path.join(os.path.dirname(__file__), '..', 'models', 'scaler_y.pkl')
if not os.path.exists(model_path):
raise FileNotFoundError(f"Model file not found at {model_path}. Ensure 'my_model.keras' is in the Space's root or src directory.")
if not os.path.exists(scaler_x_path):
raise FileNotFoundError(f"Scaler X file not found at {scaler_x_path}. Ensure 'scaler_X.pkl' is in the Space's root or src directory.")
if not os.path.exists(scaler_y_path):
raise FileNotFoundError(f"Scaler Y file not found at {scaler_y_path}. Ensure 'scaler_y.pkl' is in the Space's root or src directory.")
model = load_model(model_path)
scaler_X = pickle.load(open(scaler_x_path, 'rb'))
scaler_y = pickle.load(open(scaler_y_path, 'rb'))
except Exception as e:
st.error(f"Failed to load model or scalers: {str(e)}. Ensure 'my_model.keras', 'scaler_X.pkl', and 'scaler_y.pkl' are in the Space's root or src directory. "
"If using TensorFlow 2.18.0, try resaving the model with TensorFlow 2.18.0.")
st.stop()
# Main app layout
st.title("Power Consumption Predictor")
st.markdown("""
Enter values for one timestep to predict power consumption for Zone1, Zone2, and Zone3.
Results will be displayed as a bar plot and a table.
""")
# Input section
st.subheader("Enter Timestep Data")
st.markdown("""
**Instructions**:
- Enter values for the 8 features below (default values are provided).
- **Hour**: 0 to 23 (e.g., 14 for 2 PM).
- **DayOfWeek**: 0 to 6 (0 = Monday, 6 = Sunday).
- **Month**: 1 to 12 (e.g., 7 for July).
- **Other features**: Use reasonable values (e.g., Temperature in °C, Humidity as a fraction).
- Click "Predict" to see results.
""")
# Vertical form for input
with st.container():
feature_names = ['Hour', 'DayOfWeek', 'Month', 'Temperature', 'Humidity', 'WindSpeed', 'GeneralDiffuseFlows', 'DiffuseFlows']
default_values = [0, 6, 1, 6.559, 73.8, 0.083, 0.051, 0.119] # From dataset
user_input = []
for i, (name, default) in enumerate(zip(feature_names, default_values)):
if name in ['Hour', 'DayOfWeek', 'Month']:
value = st.number_input(
f"{name}",
min_value=0,
max_value=23 if name == 'Hour' else 6 if name == 'DayOfWeek' else 12,
value=int(default),
step=1,
key=f"input_{i}"
)
user_input.append(value)
else:
value = st.number_input(
f"{name}",
value=float(default),
step=0.01,
format="%.6f",
key=f"input_{i}"
)
user_input.append(value)
# Predict button
if st.button("Predict", key="predict_button"):
try:
# Replicate input for 24 timesteps
custom_raw_data = np.array([user_input] * 24).reshape(1, 24, 8)
# Selective scaling
features_to_scale = ['Temperature', 'Humidity', 'WindSpeed', 'GeneralDiffuseFlows', 'DiffuseFlows']
scale_indices = [3, 4, 5, 6, 7]
custom_scaled = custom_raw_data.copy()
custom_2d_to_scale = custom_raw_data[:, :, scale_indices].reshape(-1, len(scale_indices))
custom_scaled_2d = scaler_X.transform(custom_2d_to_scale)
custom_scaled[:, :, scale_indices] = custom_scaled_2d.reshape(1, 24, len(scale_indices))
# Predict
y_pred_scaled = model.predict(custom_scaled)
if isinstance(y_pred_scaled, list):
y_pred_combined = np.concatenate(y_pred_scaled, axis=1)
else:
y_pred_combined = y_pred_scaled
y_pred_original = scaler_y.inverse_transform(y_pred_combined)
# Store predictions
labels = ['PowerConsumption_Zone1', 'PowerConsumption_Zone2', 'PowerConsumption_Zone3']
st.session_state.pred_df = pd.DataFrame(y_pred_original, columns=labels, index=['User Input'])
st.session_state.predictions = y_pred_original
except Exception as e:
st.error(f"Error processing input: {str(e)}")
# Display predictions if available
if 'predictions' in st.session_state and st.session_state.predictions is not None:
st.markdown("### Predicted Power Consumption")
fig = px.bar(
st.session_state.pred_df.reset_index().melt(id_vars='index', value_vars=labels, var_name='Zone', value_name='Power Consumption'),
x='index', y='Power Consumption', color='Zone', barmode='group',
title='Predicted Power Consumption by Zone',
labels={'index': 'Sample', 'Power Consumption': 'Power Consumption (Original Scale)'}
)
fig.update_layout(
plot_bgcolor='white',
paper_bgcolor='white',
font=dict(family='Roboto', size=12),
title_font=dict(size=18, family='Roboto'),
xaxis_title="Sample",
yaxis_title="Power Consumption (Original Scale)",
legend_title="Zones",
margin=dict(l=40, r=40, t=60, b=40)
)
st.plotly_chart(fig, use_container_width=True)
st.markdown("### Prediction Table")
st.dataframe(st.session_state.pred_df.style.format("{:.4f}").set_caption("Predicted Power Consumption (Original Scale)"))
# Footer
st.markdown("---")
st.markdown("**Made by Sadik Al Jarif**")