Upload streamlit_app.py
Browse files- src/streamlit_app.py +184 -40
src/streamlit_app.py
CHANGED
@@ -1,40 +1,184 @@
|
|
1 |
-
import
|
2 |
-
import numpy as np
|
3 |
-
import pandas as pd
|
4 |
-
import
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import plotly.express as px
|
5 |
+
import pickle
|
6 |
+
from tensorflow.keras.models import load_model
|
7 |
+
|
8 |
+
# Streamlit page configuration
|
9 |
+
st.set_page_config(
|
10 |
+
page_title="Power Consumption Predictor",
|
11 |
+
layout="centered",
|
12 |
+
initial_sidebar_state="collapsed"
|
13 |
+
)
|
14 |
+
|
15 |
+
# Custom CSS for eye-catching design
|
16 |
+
st.markdown("""
|
17 |
+
<style>
|
18 |
+
@import url('https://fonts.googleapis.com/css2?family=Roboto:wght@400;700&display=swap');
|
19 |
+
.main {background-color: #ffffff;}
|
20 |
+
.stTitle {color: #003087; font-family: 'Roboto', sans-serif; text-align: center; margin-bottom: 10px; font-size: 32px; font-weight: 700;}
|
21 |
+
.stSubheader {color: #003087; font-family: 'Roboto', sans-serif; font-size: 22px; font-weight: 700; margin-top: 10px; margin-bottom: 10px;}
|
22 |
+
.stMarkdown {font-family: 'Roboto', sans-serif; color: #212529; font-size: 16px;}
|
23 |
+
.stDataFrame {
|
24 |
+
background-color: #ffffff;
|
25 |
+
border-radius: 12px;
|
26 |
+
padding: 15px;
|
27 |
+
box-shadow: 0 4px 8px rgba(0,0,0,0.1);
|
28 |
+
}
|
29 |
+
.stButton>button {
|
30 |
+
background-color: #007bff;
|
31 |
+
color: white;
|
32 |
+
border-radius: 10px;
|
33 |
+
padding: 12px 30px;
|
34 |
+
font-size: 18px;
|
35 |
+
font-family: 'Roboto', sans-serif;
|
36 |
+
font-weight: 700;
|
37 |
+
display: block;
|
38 |
+
margin: 15px auto;
|
39 |
+
border: none;
|
40 |
+
transition: all 0.3s ease;
|
41 |
+
}
|
42 |
+
.stButton>button:hover {
|
43 |
+
background: linear-gradient(45deg, #0056b3, #007bff);
|
44 |
+
transform: scale(1.05);
|
45 |
+
box-shadow: 0 4px 8px rgba(0,0,0,0.2);
|
46 |
+
}
|
47 |
+
.stNumberInput label {
|
48 |
+
color: #007bff;
|
49 |
+
font-family: 'Roboto', sans-serif;
|
50 |
+
font-weight: 700;
|
51 |
+
font-size: 16px;
|
52 |
+
}
|
53 |
+
.stNumberInput input {
|
54 |
+
background-color: #ffffff;
|
55 |
+
color: #212529;
|
56 |
+
border: 2px solid #007bff;
|
57 |
+
border-radius: 8px;
|
58 |
+
padding: 10px;
|
59 |
+
font-family: 'Roboto', sans-serif;
|
60 |
+
font-size: 14px;
|
61 |
+
caret-color: #212529;
|
62 |
+
}
|
63 |
+
.stNumberInput input:focus {
|
64 |
+
outline: none;
|
65 |
+
border-color: #003087;
|
66 |
+
box-shadow: 0 0 8px rgba(0,123,255,0.3);
|
67 |
+
}
|
68 |
+
</style>
|
69 |
+
""", unsafe_allow_html=True)
|
70 |
+
|
71 |
+
# Load model and scalers
|
72 |
+
try:
|
73 |
+
model = load_model('my_model.keras')
|
74 |
+
scaler_X = pickle.load(open('scaler_X.pkl', 'rb'))
|
75 |
+
scaler_y = pickle.load(open('scaler_y.pkl', 'rb'))
|
76 |
+
except Exception as e:
|
77 |
+
st.error(f"Failed to load model or scalers: {str(e)}. Ensure 'my_model.keras', 'scaler_X.pkl', and 'scaler_y.pkl' are in E:\\grid\\. "
|
78 |
+
"This error may occur if the TensorFlow version used to save the model differs from your installed version. "
|
79 |
+
"Try installing TensorFlow 2.17.0 or the version used to save the model (e.g., `pip install tensorflow==2.17.0`).")
|
80 |
+
st.stop()
|
81 |
+
|
82 |
+
# Main app layout
|
83 |
+
st.title("Power Consumption Predictor")
|
84 |
+
st.markdown("""
|
85 |
+
Enter values for one timestep to predict power consumption for Zone1, Zone2, and Zone3.
|
86 |
+
Results will be displayed as a vibrant bar plot and a clear table.
|
87 |
+
""")
|
88 |
+
|
89 |
+
# Input section
|
90 |
+
st.subheader("Enter Timestep Data")
|
91 |
+
st.markdown("""
|
92 |
+
**Instructions**:
|
93 |
+
- Enter values for the 8 features below (default values are provided).
|
94 |
+
- **Hour**: 0 to 23 (e.g., 14 for 2 PM).
|
95 |
+
- **DayOfWeek**: 0 to 6 (0 = Monday, 6 = Sunday).
|
96 |
+
- **Month**: 1 to 12 (e.g., 7 for July).
|
97 |
+
- **Other features**: Use reasonable values (e.g., Temperature in °C, Humidity as a fraction).
|
98 |
+
- Click "Predict" to see results.
|
99 |
+
""")
|
100 |
+
|
101 |
+
# Vertical form for input
|
102 |
+
with st.container():
|
103 |
+
feature_names = ['Hour', 'DayOfWeek', 'Month', 'Temperature', 'Humidity', 'WindSpeed', 'GeneralDiffuseFlows', 'DiffuseFlows']
|
104 |
+
default_values = [0, 6, 1, 6.559, 73.8, 0.083, 0.051, 0.119] # From dataset
|
105 |
+
user_input = []
|
106 |
+
for i, (name, default) in enumerate(zip(feature_names, default_values)):
|
107 |
+
if name in ['Hour', 'DayOfWeek', 'Month']:
|
108 |
+
value = st.number_input(
|
109 |
+
f"{name}",
|
110 |
+
min_value=0,
|
111 |
+
max_value=23 if name == 'Hour' else 6 if name == 'DayOfWeek' else 12,
|
112 |
+
value=int(default),
|
113 |
+
step=1,
|
114 |
+
key=f"input_{i}"
|
115 |
+
)
|
116 |
+
user_input.append(value)
|
117 |
+
else:
|
118 |
+
value = st.number_input(
|
119 |
+
f"{name}",
|
120 |
+
value=float(default),
|
121 |
+
step=0.01,
|
122 |
+
format="%.6f",
|
123 |
+
key=f"input_{i}"
|
124 |
+
)
|
125 |
+
user_input.append(value)
|
126 |
+
|
127 |
+
# Predict button
|
128 |
+
if st.button("Predict", key="predict_button"):
|
129 |
+
try:
|
130 |
+
# Replicate input for 24 timesteps
|
131 |
+
custom_raw_data = np.array([user_input] * 24).reshape(1, 24, 8)
|
132 |
+
|
133 |
+
# Selective scaling
|
134 |
+
features_to_scale = ['Temperature', 'Humidity', 'WindSpeed', 'GeneralDiffuseFlows', 'DiffuseFlows']
|
135 |
+
scale_indices = [3, 4, 5, 6, 7]
|
136 |
+
custom_scaled = custom_raw_data.copy()
|
137 |
+
custom_2d_to_scale = custom_raw_data[:, :, scale_indices].reshape(-1, len(scale_indices))
|
138 |
+
custom_scaled_2d = scaler_X.transform(custom_2d_to_scale)
|
139 |
+
custom_scaled[:, :, scale_indices] = custom_scaled_2d.reshape(1, 24, len(scale_indices))
|
140 |
+
|
141 |
+
# Predict
|
142 |
+
y_pred_scaled = model.predict(custom_scaled)
|
143 |
+
if isinstance(y_pred_scaled, list):
|
144 |
+
y_pred_combined = np.concatenate(y_pred_scaled, axis=1)
|
145 |
+
else:
|
146 |
+
y_pred_combined = y_pred_scaled
|
147 |
+
y_pred_original = scaler_y.inverse_transform(y_pred_combined)
|
148 |
+
|
149 |
+
# Store predictions
|
150 |
+
labels = ['PowerConsumption_Zone1', 'PowerConsumption_Zone2', 'PowerConsumption_Zone3']
|
151 |
+
st.session_state.pred_df = pd.DataFrame(y_pred_original, columns=labels, index=['User Input'])
|
152 |
+
st.session_state.predictions = y_pred_original
|
153 |
+
|
154 |
+
except Exception as e:
|
155 |
+
st.error(f"Error processing input: {str(e)}")
|
156 |
+
|
157 |
+
# Display predictions if available
|
158 |
+
if 'predictions' in st.session_state and st.session_state.predictions is not None:
|
159 |
+
st.markdown("### Predicted Power Consumption")
|
160 |
+
fig = px.bar(
|
161 |
+
st.session_state.pred_df.reset_index().melt(id_vars='index', value_vars=labels, var_name='Zone', value_name='Power Consumption'),
|
162 |
+
x='index', y='Power Consumption', color='Zone', barmode='group',
|
163 |
+
title='Predicted Power Consumption by Zone',
|
164 |
+
labels={'index': 'Sample', 'Power Consumption': 'Power Consumption (Original Scale)'},
|
165 |
+
color_discrete_sequence=['#007bff', '#28a745', '#dc3545']
|
166 |
+
)
|
167 |
+
fig.update_layout(
|
168 |
+
plot_bgcolor='white',
|
169 |
+
paper_bgcolor='white',
|
170 |
+
font=dict(family='Roboto', size=12, color='#212529'),
|
171 |
+
title_font=dict(size=18, family='Roboto', color='#003087'),
|
172 |
+
xaxis_title="Sample",
|
173 |
+
yaxis_title="Power Consumption (Original Scale)",
|
174 |
+
legend_title="Zones",
|
175 |
+
margin=dict(l=40, r=40, t=60, b=40)
|
176 |
+
)
|
177 |
+
st.plotly_chart(fig, use_container_width=True)
|
178 |
+
|
179 |
+
st.markdown("### Prediction Table")
|
180 |
+
st.dataframe(st.session_state.pred_df.style.format("{:.4f}").set_caption("Predicted Power Consumption (Original Scale)"))
|
181 |
+
|
182 |
+
# Footer
|
183 |
+
st.markdown("---")
|
184 |
+
st.markdown("**Made by Sadik Al Jarif**")
|