Spaces:
Build error
Build error
| import pdb | |
| from pathlib import Path | |
| import sys | |
| PROJECT_ROOT = Path(__file__).absolute().parents[0].absolute() | |
| sys.path.insert(0, str(PROJECT_ROOT)) | |
| import os | |
| import torch | |
| import numpy as np | |
| from PIL import Image | |
| import cv2 | |
| import random | |
| import time | |
| import pdb | |
| from pipelines_ootd.pipeline_ootd import OotdPipeline | |
| from pipelines_ootd.unet_garm_2d_condition import UNetGarm2DConditionModel | |
| from pipelines_ootd.unet_vton_2d_condition import UNetVton2DConditionModel | |
| from diffusers import UniPCMultistepScheduler | |
| from diffusers import AutoencoderKL | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from transformers import AutoProcessor, CLIPVisionModelWithProjection | |
| from transformers import CLIPTextModel, CLIPTokenizer | |
| VIT_PATH = "openai/clip-vit-large-patch14" | |
| VAE_PATH = "levihsu/OOTDiffusion/checkpoints/ootd" | |
| UNET_PATH = "levihsu/OOTDiffusion/checkpoints/ootd/ootd_dc/checkpoint-36000" | |
| MODEL_PATH = "levihsu/OOTDiffusion/checkpoints/ootd" | |
| class OOTDiffusionDC: | |
| def __init__(self, gpu_id): | |
| self.gpu_id = 'cuda:' + str(gpu_id) | |
| vae = AutoencoderKL.from_pretrained( | |
| VAE_PATH, | |
| subfolder="vae", | |
| torch_dtype=torch.float16, | |
| ) | |
| unet_garm = UNetGarm2DConditionModel.from_pretrained( | |
| UNET_PATH, | |
| subfolder="unet_garm", | |
| torch_dtype=torch.float16, | |
| use_safetensors=True, | |
| ) | |
| unet_vton = UNetVton2DConditionModel.from_pretrained( | |
| UNET_PATH, | |
| subfolder="unet_vton", | |
| torch_dtype=torch.float16, | |
| use_safetensors=True, | |
| ) | |
| self.pipe = OotdPipeline.from_pretrained( | |
| MODEL_PATH, | |
| unet_garm=unet_garm, | |
| unet_vton=unet_vton, | |
| vae=vae, | |
| torch_dtype=torch.float16, | |
| variant="fp16", | |
| use_safetensors=True, | |
| safety_checker=None, | |
| requires_safety_checker=False, | |
| ).to(self.gpu_id) | |
| self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) | |
| self.auto_processor = AutoProcessor.from_pretrained(VIT_PATH) | |
| self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(VIT_PATH).to(self.gpu_id) | |
| self.tokenizer = CLIPTokenizer.from_pretrained( | |
| MODEL_PATH, | |
| subfolder="tokenizer", | |
| ) | |
| self.text_encoder = CLIPTextModel.from_pretrained( | |
| MODEL_PATH, | |
| subfolder="text_encoder", | |
| ).to(self.gpu_id) | |
| def tokenize_captions(self, captions, max_length): | |
| inputs = self.tokenizer( | |
| captions, max_length=max_length, padding="max_length", truncation=True, return_tensors="pt" | |
| ) | |
| return inputs.input_ids | |
| def __call__(self, | |
| model_type='hd', | |
| category='upperbody', | |
| image_garm=None, | |
| image_vton=None, | |
| mask=None, | |
| image_ori=None, | |
| num_samples=1, | |
| num_steps=20, | |
| image_scale=1.0, | |
| seed=-1, | |
| ): | |
| if seed == -1: | |
| random.seed(time.time()) | |
| seed = random.randint(0, 2147483647) | |
| print('Initial seed: ' + str(seed)) | |
| generator = torch.manual_seed(seed) | |
| with torch.no_grad(): | |
| prompt_image = self.auto_processor(images=image_garm, return_tensors="pt").to(self.gpu_id) | |
| prompt_image = self.image_encoder(prompt_image.data['pixel_values']).image_embeds | |
| prompt_image = prompt_image.unsqueeze(1) | |
| if model_type == 'hd': | |
| prompt_embeds = self.text_encoder(self.tokenize_captions([""], 2).to(self.gpu_id))[0] | |
| prompt_embeds[:, 1:] = prompt_image[:] | |
| elif model_type == 'dc': | |
| prompt_embeds = self.text_encoder(self.tokenize_captions([category], 3).to(self.gpu_id))[0] | |
| prompt_embeds = torch.cat([prompt_embeds, prompt_image], dim=1) | |
| else: | |
| raise ValueError("model_type must be \'hd\' or \'dc\'!") | |
| images = self.pipe(prompt_embeds=prompt_embeds, | |
| image_garm=image_garm, | |
| image_vton=image_vton, | |
| mask=mask, | |
| image_ori=image_ori, | |
| num_inference_steps=num_steps, | |
| image_guidance_scale=image_scale, | |
| num_images_per_prompt=num_samples, | |
| generator=generator, | |
| ).images | |
| return images | |