Divyansh Kushwaha
commited on
Commit
·
5011037
1
Parent(s):
b83c08b
UPdated
Browse files- Dockerfile +10 -8
- api.py +176 -6
Dockerfile
CHANGED
@@ -1,17 +1,19 @@
|
|
1 |
FROM python:3.9-slim
|
2 |
|
|
|
|
|
|
|
|
|
|
|
3 |
# Set the working directory
|
4 |
WORKDIR /app
|
5 |
|
6 |
# Copy requirements and install dependencies
|
7 |
-
COPY requirements.txt .
|
8 |
-
RUN pip install --no-cache-dir -r requirements.txt
|
9 |
-
|
10 |
-
# Copy the application code
|
11 |
-
COPY . .
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
|
16 |
# Command to run the FastAPI app
|
17 |
-
CMD ["uvicorn", "api:app", "--host", "0.0.0.0", "--port", "
|
|
|
1 |
FROM python:3.9-slim
|
2 |
|
3 |
+
# Create a non-root user
|
4 |
+
RUN useradd -m -u 1000 user
|
5 |
+
USER user
|
6 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
7 |
+
|
8 |
# Set the working directory
|
9 |
WORKDIR /app
|
10 |
|
11 |
# Copy requirements and install dependencies
|
12 |
+
COPY --chown=user requirements.txt requirements.txt
|
13 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
|
|
|
|
|
|
14 |
|
15 |
+
# Copy application code
|
16 |
+
COPY --chown=user . /app
|
17 |
|
18 |
# Command to run the FastAPI app
|
19 |
+
CMD ["uvicorn", "api:app", "--host", "0.0.0.0", "--port", "7860"]
|
api.py
CHANGED
@@ -238,16 +238,12 @@
|
|
238 |
from fastapi import FastAPI, Query,HTTPException
|
239 |
from fastapi.responses import JSONResponse, FileResponse
|
240 |
from elevenlabs import ElevenLabs
|
|
|
|
|
241 |
from langchain.schema import HumanMessage
|
242 |
from langchain_groq import ChatGroq
|
243 |
import json
|
244 |
from dotenv import load_dotenv
|
245 |
-
from utils import (
|
246 |
-
extract_titles_and_summaries,
|
247 |
-
perform_sentiment_analysis,
|
248 |
-
extract_topics_with_hf,
|
249 |
-
compare_articles
|
250 |
-
)
|
251 |
import os
|
252 |
load_dotenv()
|
253 |
GROQ_API_KEY = os.getenv('GROQ_API_KEY')
|
@@ -261,6 +257,180 @@ llm=ChatGroq(api_key=GROQ_API_KEY, model="llama-3.1-8b-instant")
|
|
261 |
JSON_FILE_PATH = "final_summary.json"
|
262 |
AUDIO_FILE_PATH = "hindi_summary.mp3"
|
263 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
|
265 |
def generate_summary(company_name):
|
266 |
news_articles = extract_titles_and_summaries(company_name)
|
|
|
238 |
from fastapi import FastAPI, Query,HTTPException
|
239 |
from fastapi.responses import JSONResponse, FileResponse
|
240 |
from elevenlabs import ElevenLabs
|
241 |
+
from bs4 import BeautifulSoup
|
242 |
+
import requests
|
243 |
from langchain.schema import HumanMessage
|
244 |
from langchain_groq import ChatGroq
|
245 |
import json
|
246 |
from dotenv import load_dotenv
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
import os
|
248 |
load_dotenv()
|
249 |
GROQ_API_KEY = os.getenv('GROQ_API_KEY')
|
|
|
257 |
JSON_FILE_PATH = "final_summary.json"
|
258 |
AUDIO_FILE_PATH = "hindi_summary.mp3"
|
259 |
|
260 |
+
def extract_titles_and_summaries(company_name, num_articles=10):
|
261 |
+
url = f"https://economictimes.indiatimes.com/topic/{company_name}/news"
|
262 |
+
try:
|
263 |
+
response = requests.get(url)
|
264 |
+
if response.status_code != 200:
|
265 |
+
print(f"Failed to fetch the webpage. Status code: {response.status_code}")
|
266 |
+
return []
|
267 |
+
|
268 |
+
soup = BeautifulSoup(response.content, "html.parser")
|
269 |
+
articles = soup.find_all('div', class_='clr flt topicstry story_list', limit=num_articles)
|
270 |
+
extracted_articles = []
|
271 |
+
|
272 |
+
for article in articles:
|
273 |
+
title_tag = article.find('h2')
|
274 |
+
if title_tag:
|
275 |
+
link_tag = title_tag.find('a')
|
276 |
+
title = link_tag.get_text(strip=True) if link_tag else "No Title Found"
|
277 |
+
else:
|
278 |
+
title = "No Title Found"
|
279 |
+
|
280 |
+
summary_tag = article.find('p')
|
281 |
+
summary = summary_tag.get_text(strip=True) if summary_tag else "No Summary Found"
|
282 |
+
|
283 |
+
extracted_articles.append({
|
284 |
+
"Title": title,
|
285 |
+
"Summary": summary
|
286 |
+
})
|
287 |
+
|
288 |
+
return {
|
289 |
+
"Company": company_name,
|
290 |
+
"Articles": extracted_articles
|
291 |
+
}
|
292 |
+
except Exception as e:
|
293 |
+
print(f"An error occurred: {e}")
|
294 |
+
return []
|
295 |
+
|
296 |
+
def perform_sentiment_analysis(news_data):
|
297 |
+
from transformers import pipeline
|
298 |
+
articles = news_data.get("Articles", [])
|
299 |
+
pipe = pipeline("text-classification", model="tabularisai/multilingual-sentiment-analysis",device=1)
|
300 |
+
sentiment_counts = {"Positive": 0, "Negative": 0, "Neutral": 0}
|
301 |
+
|
302 |
+
for article in articles:
|
303 |
+
content = f"{article['Title']} {article['Summary']}"
|
304 |
+
sentiment_result = pipe(content)[0]
|
305 |
+
|
306 |
+
sentiment_map = {
|
307 |
+
"positive": "Positive",
|
308 |
+
"negative": "Negative",
|
309 |
+
"neutral": "Neutral",
|
310 |
+
"very positive": "Positive",
|
311 |
+
"very negative": "Negative"
|
312 |
+
}
|
313 |
+
|
314 |
+
sentiment = sentiment_map.get(sentiment_result["label"].lower(), "Unknown")
|
315 |
+
score = float(sentiment_result["score"])
|
316 |
+
|
317 |
+
article["Sentiment"] = sentiment
|
318 |
+
article["Score"] = score
|
319 |
+
|
320 |
+
if sentiment in sentiment_counts:
|
321 |
+
sentiment_counts[sentiment] += 1
|
322 |
+
|
323 |
+
return news_data, sentiment_counts
|
324 |
+
|
325 |
+
def extract_topics_with_hf(news_data):
|
326 |
+
structured_data = {
|
327 |
+
"Company": news_data.get("Company", "Unknown"),
|
328 |
+
"Articles": []
|
329 |
+
}
|
330 |
+
articles = news_data.get("Articles", [])
|
331 |
+
for article in articles:
|
332 |
+
content = f"{article['Title']} {article['Summary']}"
|
333 |
+
# Define the prompt for Groq AI
|
334 |
+
prompt = f"""
|
335 |
+
Analyze the following content: "{content}"
|
336 |
+
Extract and return **exactly three key topics** most relevant to this content.
|
337 |
+
The topics should be of one word after analyzing the content.
|
338 |
+
Respond in a JSON format like this:
|
339 |
+
{{"Topics": ["topic1", "topic2", "topic3"]}}
|
340 |
+
"""
|
341 |
+
try:
|
342 |
+
# Use Groq AI to invoke the model
|
343 |
+
response = llm.invoke([HumanMessage(content=prompt)]).content
|
344 |
+
topics_result = json.loads(response).get("Topics", ["Unknown"]) # Parse JSON response
|
345 |
+
except Exception as e:
|
346 |
+
print(f"Error while extracting topics: {e}")
|
347 |
+
topics_result = ["Unknown"]
|
348 |
+
|
349 |
+
structured_data["Articles"].append({
|
350 |
+
"Title": article["Title"],
|
351 |
+
"Summary": article["Summary"],
|
352 |
+
"Sentiment": article.get("Sentiment", "Unknown"),
|
353 |
+
"Score": article.get("Score", 0.0),
|
354 |
+
"Topics": topics_result
|
355 |
+
})
|
356 |
+
return structured_data
|
357 |
+
|
358 |
+
def generate_final_sentiment(news_data, sentiment_counts):
|
359 |
+
company_name = news_data["Company"]
|
360 |
+
total_articles = sum(sentiment_counts.values())
|
361 |
+
combined_summaries = " ".join([article["Summary"] for article in news_data["Articles"]])
|
362 |
+
prompt = f"""
|
363 |
+
Based on the analysis of {total_articles} articles about the company "{company_name}":
|
364 |
+
- Positive articles: {sentiment_counts['Positive']}
|
365 |
+
- Negative articles: {sentiment_counts['Negative']}
|
366 |
+
- Neutral articles: {sentiment_counts['Neutral']}
|
367 |
+
The following are the summarized key points from the articles: "{combined_summaries}".
|
368 |
+
Provide a single, concise summary that integrates the overall sentiment analysis and key news highlights while maintaining a natural flow. Explain its implications for the company's reputation, stock potential, and public perception.
|
369 |
+
Respond **ONLY** with a well-structured very concised and very short paragraph in plain text, focus on overall sentiment.
|
370 |
+
"""
|
371 |
+
response = llm.invoke([HumanMessage(content=prompt)],max_tokens=200)
|
372 |
+
final_sentiment = response if response else "Sentiment analysis summary not available."
|
373 |
+
return final_sentiment.content # it's a string
|
374 |
+
|
375 |
+
def extract_json(response):
|
376 |
+
try:
|
377 |
+
return json.loads(response)
|
378 |
+
except json.JSONDecodeError:
|
379 |
+
return {}
|
380 |
+
|
381 |
+
def compare_articles(news_data, sentiment_counts):
|
382 |
+
articles = news_data.get("Articles", [])
|
383 |
+
all_topics = [set(article["Topics"]) for article in articles]
|
384 |
+
common_topics = set.intersection(*all_topics) if all_topics else set()
|
385 |
+
topics_prompt = f"""
|
386 |
+
Analyze the following article topics and identify **only three** key themes that are common across multiple articles,
|
387 |
+
even if they are phrased differently. The topics from each article are:
|
388 |
+
{all_topics}
|
389 |
+
|
390 |
+
Respond **ONLY** with a JSON format:
|
391 |
+
{{"CommonTopics": ["topic1", "topic2", "topic3"]}}
|
392 |
+
"""
|
393 |
+
response = llm.invoke([HumanMessage(content=topics_prompt)]).content
|
394 |
+
contextual_common_topics = extract_json(response).get("CommonTopics", list(common_topics))[:3] # Limit to 3 topics
|
395 |
+
|
396 |
+
total_articles = sum(sentiment_counts.values())
|
397 |
+
comparison_prompt = f"""
|
398 |
+
Provide a high-level summary comparing {total_articles} news articles about "{news_data['Company']}":
|
399 |
+
- Sentiment distribution: {sentiment_counts}
|
400 |
+
- Commonly discussed topics across articles: {contextual_common_topics}
|
401 |
+
|
402 |
+
Consider the following:
|
403 |
+
1. Notable contrasts between articles (e.g., major differences in topics and perspectives).
|
404 |
+
2. Overall implications for the company's reputation, stock potential, and public perception.
|
405 |
+
3. How sentiment varies across articles and its impact.
|
406 |
+
|
407 |
+
Respond **ONLY** with a concise and insightful summary in this JSON format:
|
408 |
+
{{
|
409 |
+
"Coverage Differences": [
|
410 |
+
{{"Comparison": "Brief contrast between Articles 1 & 2", "Impact": "Concise impact statement"}},
|
411 |
+
{{"Comparison": "Brief contrast between Articles 3 & 4", "Impact": "Concise impact statement"}}
|
412 |
+
]
|
413 |
+
}}
|
414 |
+
"""
|
415 |
+
response = llm.invoke([HumanMessage(content=comparison_prompt)]).content
|
416 |
+
coverage_differences = extract_json(response).get("Coverage Differences", [])
|
417 |
+
final_sentiment = generate_final_sentiment(news_data, sentiment_counts,llm)
|
418 |
+
return {
|
419 |
+
"Company": news_data["Company"],
|
420 |
+
"Articles": articles,
|
421 |
+
"Comparative Sentiment Score": {
|
422 |
+
"Sentiment Distribution": sentiment_counts,
|
423 |
+
"Coverage Differences": coverage_differences,
|
424 |
+
"Topic Overlap": {
|
425 |
+
"Common Topics": contextual_common_topics,
|
426 |
+
"Unique Topics": {
|
427 |
+
f"Article {i+1}": list(topics - set(contextual_common_topics))
|
428 |
+
for i, topics in enumerate(all_topics)
|
429 |
+
}
|
430 |
+
}
|
431 |
+
},
|
432 |
+
"Final Sentiment Analysis": final_sentiment
|
433 |
+
}
|
434 |
|
435 |
def generate_summary(company_name):
|
436 |
news_articles = extract_titles_and_summaries(company_name)
|