Divyansh Kushwaha
commited on
Commit
·
f5dd236
1
Parent(s):
e6ec654
Files updated
Browse files- Dockerfile +17 -0
- api.py +366 -0
- main.py +0 -0
- requirements.txt +8 -0
- utils.py +173 -0
Dockerfile
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.9-slim
|
| 2 |
+
|
| 3 |
+
# Set the working directory
|
| 4 |
+
WORKDIR /app
|
| 5 |
+
|
| 6 |
+
# Copy requirements and install dependencies
|
| 7 |
+
COPY requirements.txt .
|
| 8 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 9 |
+
|
| 10 |
+
# Copy the application code
|
| 11 |
+
COPY . .
|
| 12 |
+
|
| 13 |
+
# Expose the port FastAPI will run on
|
| 14 |
+
EXPOSE 8000
|
| 15 |
+
|
| 16 |
+
# Command to run the FastAPI app
|
| 17 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "8000"]
|
api.py
ADDED
|
@@ -0,0 +1,366 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# from fastapi import FastAPI, Query
|
| 2 |
+
# from fastapi.responses import JSONResponse, FileResponse
|
| 3 |
+
# import json
|
| 4 |
+
# import os
|
| 5 |
+
# from bs4 import BeautifulSoup
|
| 6 |
+
# from dotenv import load_dotenv
|
| 7 |
+
# import requests
|
| 8 |
+
# from transformers import pipeline
|
| 9 |
+
# from elevenlabs import ElevenLabs
|
| 10 |
+
# from langchain_groq import ChatGroq
|
| 11 |
+
# from langchain.schema import HumanMessage
|
| 12 |
+
|
| 13 |
+
# app = FastAPI(title="Company Sentiment API", description="Get company news summaries with sentiment analysis")
|
| 14 |
+
|
| 15 |
+
# load_dotenv()
|
| 16 |
+
# GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
| 17 |
+
# ELEVEN_LABS_API_KEY = os.getenv("ELEVEN_LABS_API_KEY")
|
| 18 |
+
|
| 19 |
+
# llm = ChatGroq(api_key=GROQ_API_KEY, model="llama-3.1-8b-instant")
|
| 20 |
+
|
| 21 |
+
# JSON_FILE_PATH = "final_summary.json"
|
| 22 |
+
# AUDIO_FILE_PATH = "hindi_summary.mp3"
|
| 23 |
+
|
| 24 |
+
# def extract_titles_and_summaries(company_name, num_articles=10):
|
| 25 |
+
|
| 26 |
+
# url = f"https://economictimes.indiatimes.com/topic/{company_name}/news"
|
| 27 |
+
# try:
|
| 28 |
+
# response = requests.get(url)
|
| 29 |
+
# if response.status_code != 200:
|
| 30 |
+
# print(f"Failed to fetch the webpage. Status code: {response.status_code}")
|
| 31 |
+
# return []
|
| 32 |
+
|
| 33 |
+
# soup = BeautifulSoup(response.content, "html.parser")
|
| 34 |
+
# articles = soup.find_all('div', class_='clr flt topicstry story_list', limit=num_articles)
|
| 35 |
+
# extracted_articles = []
|
| 36 |
+
|
| 37 |
+
# for article in articles:
|
| 38 |
+
# title_tag = article.find('h2').find('a')
|
| 39 |
+
# title = title_tag.get_text(strip=True) if title_tag else "No Title Found"
|
| 40 |
+
|
| 41 |
+
# summary_tag = article.find('p')
|
| 42 |
+
# summary = summary_tag.get_text(strip=True) if summary_tag else "No Summary Found"
|
| 43 |
+
|
| 44 |
+
# extracted_articles.append({
|
| 45 |
+
# "Title": title,
|
| 46 |
+
# "Summary": summary
|
| 47 |
+
# })
|
| 48 |
+
|
| 49 |
+
# return {
|
| 50 |
+
# "Company": company_name,
|
| 51 |
+
# "Articles": extracted_articles
|
| 52 |
+
# }
|
| 53 |
+
# except Exception as e:
|
| 54 |
+
# print(f"An error occurred: {e}")
|
| 55 |
+
# return []
|
| 56 |
+
|
| 57 |
+
# def perform_sentiment_analysis(news_data):
|
| 58 |
+
# articles = news_data.get("Articles", [])
|
| 59 |
+
# pipe = pipeline("text-classification", model="tabularisai/multilingual-sentiment-analysis")
|
| 60 |
+
# sentiment_counts = {"Positive": 0, "Negative": 0, "Neutral": 0}
|
| 61 |
+
|
| 62 |
+
# for article in articles:
|
| 63 |
+
# content = f"{article['Title']} {article['Summary']}"
|
| 64 |
+
# sentiment_result = pipe(content)[0]
|
| 65 |
+
|
| 66 |
+
# sentiment_map = {
|
| 67 |
+
# "positive": "Positive",
|
| 68 |
+
# "negative": "Negative",
|
| 69 |
+
# "neutral": "Neutral",
|
| 70 |
+
# "very positive":"Positive",
|
| 71 |
+
# "very negative":"Negative"
|
| 72 |
+
# }
|
| 73 |
+
|
| 74 |
+
# sentiment = sentiment_map.get(sentiment_result["label"].lower(), "Unknown")
|
| 75 |
+
# score = float(sentiment_result["score"])
|
| 76 |
+
|
| 77 |
+
# article["Sentiment"] = sentiment
|
| 78 |
+
# article["Score"] = score
|
| 79 |
+
|
| 80 |
+
# if sentiment in sentiment_counts:
|
| 81 |
+
# sentiment_counts[sentiment] += 1
|
| 82 |
+
|
| 83 |
+
# return news_data, sentiment_counts
|
| 84 |
+
|
| 85 |
+
# def extract_topics_with_hf(news_data):
|
| 86 |
+
# structured_data = {
|
| 87 |
+
# "Company": news_data.get("Company", "Unknown"),
|
| 88 |
+
# "Articles": []
|
| 89 |
+
# }
|
| 90 |
+
# topic_pipe = pipeline("text-classification", model="valurank/distilroberta-topic-classification")
|
| 91 |
+
# articles = news_data.get("Articles", [])
|
| 92 |
+
# for article in articles:
|
| 93 |
+
# content = f"{article['Title']} {article['Summary']}"
|
| 94 |
+
# topics_result = topic_pipe(content, top_k=3)
|
| 95 |
+
# topics = [topic["label"] for topic in topics_result] if topics_result else ["Unknown"]
|
| 96 |
+
|
| 97 |
+
# structured_data["Articles"].append({
|
| 98 |
+
# "Title": article["Title"],
|
| 99 |
+
# "Summary": article["Summary"],
|
| 100 |
+
# "Sentiment": article.get("Sentiment", "Unknown"),
|
| 101 |
+
# "Score": article.get("Score", 0.0),
|
| 102 |
+
# "Topics": topics
|
| 103 |
+
# })
|
| 104 |
+
# return structured_data
|
| 105 |
+
|
| 106 |
+
# def generate_final_sentiment(news_data, sentiment_counts):
|
| 107 |
+
# company_name = news_data["Company"]
|
| 108 |
+
# total_articles = sum(sentiment_counts.values())
|
| 109 |
+
# combined_summaries = " ".join([article["Summary"] for article in news_data["Articles"]])
|
| 110 |
+
# prompt = f"""
|
| 111 |
+
# Based on the analysis of {total_articles} articles about the company "{company_name}":
|
| 112 |
+
# - Positive articles: {sentiment_counts['Positive']}
|
| 113 |
+
# - Negative articles: {sentiment_counts['Negative']}
|
| 114 |
+
# - Neutral articles: {sentiment_counts['Neutral']}
|
| 115 |
+
|
| 116 |
+
# The following are the summarized key points from the articles: "{combined_summaries}".
|
| 117 |
+
# Provide a single, concise summary that integrates the overall sentiment analysis and key news highlights while maintaining a natural flow. Explain its implications for the company's reputation, stock potential, and public perception.
|
| 118 |
+
# Respond **ONLY** with a well-structured very concised and very short paragraph in plain text, focus on overall sentiment.
|
| 119 |
+
# """
|
| 120 |
+
# response = llm.invoke([HumanMessage(content=prompt)],max_tokens=200)
|
| 121 |
+
# final_sentiment = response if response else "Sentiment analysis summary not available."
|
| 122 |
+
# return final_sentiment.content
|
| 123 |
+
|
| 124 |
+
# def extract_json(response):
|
| 125 |
+
# try:
|
| 126 |
+
# return json.loads(response)
|
| 127 |
+
# except json.JSONDecodeError:
|
| 128 |
+
# return {}
|
| 129 |
+
|
| 130 |
+
# def compare_articles(news_data, sentiment_counts):
|
| 131 |
+
# articles = news_data.get("Articles", [])
|
| 132 |
+
# all_topics = [set(article["Topics"]) for article in articles]
|
| 133 |
+
|
| 134 |
+
# common_topics = set.intersection(*all_topics) if all_topics else set()
|
| 135 |
+
|
| 136 |
+
# topics_prompt = f"""
|
| 137 |
+
# Analyze the following article topics and identify **only three** key themes that are common across multiple articles,
|
| 138 |
+
# even if they are phrased differently. The topics from each article are:
|
| 139 |
+
# {all_topics}
|
| 140 |
+
|
| 141 |
+
# Respond **ONLY** with a JSON format:
|
| 142 |
+
# {{"CommonTopics": ["topic1", "topic2", "topic3"]}}
|
| 143 |
+
# """
|
| 144 |
+
|
| 145 |
+
# response = llm.invoke([HumanMessage(content=topics_prompt)]).content
|
| 146 |
+
# contextual_common_topics = extract_json(response).get("CommonTopics", list(common_topics))[:3] # Limit to 3 topics
|
| 147 |
+
|
| 148 |
+
# total_articles = sum(sentiment_counts.values())
|
| 149 |
+
# comparison_prompt = f"""
|
| 150 |
+
# Provide a high-level summary comparing {total_articles} news articles about "{news_data['Company']}":
|
| 151 |
+
# - Sentiment distribution: {sentiment_counts}
|
| 152 |
+
# - Commonly discussed topics across articles: {contextual_common_topics}
|
| 153 |
+
|
| 154 |
+
# Consider the following:
|
| 155 |
+
# 1. Notable contrasts between articles (e.g., major differences in topics and perspectives).
|
| 156 |
+
# 2. Overall implications for the company's reputation, stock potential, and public perception.
|
| 157 |
+
# 3. How sentiment varies across articles and its impact.
|
| 158 |
+
|
| 159 |
+
# Respond **ONLY** with a concise and insightful summary in this JSON format:
|
| 160 |
+
# {{
|
| 161 |
+
# "Coverage Differences": [
|
| 162 |
+
# {{"Comparison": "Brief contrast between Articles 1 & 2", "Impact": "Concise impact statement"}},
|
| 163 |
+
# {{"Comparison": "Brief contrast between Articles 3 & 4", "Impact": "Concise impact statement"}},
|
| 164 |
+
# ...
|
| 165 |
+
# ]
|
| 166 |
+
# }}
|
| 167 |
+
# """
|
| 168 |
+
|
| 169 |
+
# response = llm.invoke([HumanMessage(content=comparison_prompt)]).content
|
| 170 |
+
# coverage_differences = extract_json(response).get("Coverage Differences", [])
|
| 171 |
+
|
| 172 |
+
# final_sentiment = generate_final_sentiment(news_data, sentiment_counts)
|
| 173 |
+
|
| 174 |
+
# return {
|
| 175 |
+
# "Company": news_data["Company"],
|
| 176 |
+
# "Articles": articles,
|
| 177 |
+
# "Comparative Sentiment Score": {
|
| 178 |
+
# "Sentiment Distribution": sentiment_counts,
|
| 179 |
+
# "Coverage Differences": coverage_differences,
|
| 180 |
+
# "Topic Overlap": {
|
| 181 |
+
# "Common Topics": contextual_common_topics,
|
| 182 |
+
# "Unique Topics": {
|
| 183 |
+
# f"Article {i+1}": list(topics - set(contextual_common_topics))
|
| 184 |
+
# for i, topics in enumerate(all_topics)
|
| 185 |
+
# }
|
| 186 |
+
# }
|
| 187 |
+
# },
|
| 188 |
+
# "Final Sentiment Analysis": final_sentiment
|
| 189 |
+
# }
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
# def generate_summary(company_name):
|
| 193 |
+
# news_articles = extract_titles_and_summaries(company_name)
|
| 194 |
+
# news_articles, sentiment_counts = perform_sentiment_analysis(news_articles)
|
| 195 |
+
# news_articles = extract_topics_with_hf(news_articles)
|
| 196 |
+
# final_summary = compare_articles(news_articles, sentiment_counts)
|
| 197 |
+
|
| 198 |
+
# hindi_prompt = f"Translate this text into Hindi: {final_summary['Final Sentiment Analysis']}"
|
| 199 |
+
# hindi_summary = llm.invoke([HumanMessage(content=hindi_prompt)]).content
|
| 200 |
+
|
| 201 |
+
# client = ElevenLabs(api_key=ELEVEN_LABS_API_KEY)
|
| 202 |
+
# audio = client.text_to_speech.convert(
|
| 203 |
+
# voice_id="9BWtsMINqrJLrRacOk9x",
|
| 204 |
+
# output_format="mp3_44100_128",
|
| 205 |
+
# text=hindi_summary,
|
| 206 |
+
# model_id="eleven_multilingual_v2",
|
| 207 |
+
# )
|
| 208 |
+
# with open(AUDIO_FILE_PATH, "wb") as f:
|
| 209 |
+
# f.write(b"".join(audio))
|
| 210 |
+
|
| 211 |
+
# return final_summary["Final Sentiment Analysis"]
|
| 212 |
+
|
| 213 |
+
# @app.get("/")
|
| 214 |
+
# def home():
|
| 215 |
+
# return {"message": "Welcome to the Company Sentiment API"}
|
| 216 |
+
|
| 217 |
+
# @app.get("/generateSummary")
|
| 218 |
+
# def get_summary(company_name: str = Query(..., description="Enter company name")):
|
| 219 |
+
# summary = generate_summary(company_name)
|
| 220 |
+
# return {"final_summary": summary}
|
| 221 |
+
|
| 222 |
+
# @app.get("/downloadJson")
|
| 223 |
+
# def download_json():
|
| 224 |
+
# return FileResponse(JSON_FILE_PATH, media_type="application/json", filename="final_summary.json")
|
| 225 |
+
|
| 226 |
+
# @app.get("/downloadHindiAudio")
|
| 227 |
+
# def download_audio():
|
| 228 |
+
# return FileResponse(AUDIO_FILE_PATH, media_type="audio/mp3", filename="hindi_summary.mp3")
|
| 229 |
+
|
| 230 |
+
# if __name__ == "__main__":
|
| 231 |
+
# import uvicorn
|
| 232 |
+
# uvicorn.run(app, host="0.0.0.0", port=8000)
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
from fastapi import FastAPI, Query,HTTPException
|
| 241 |
+
from fastapi.responses import JSONResponse, FileResponse
|
| 242 |
+
from elevenlabs import ElevenLabs
|
| 243 |
+
from langchain.schema import HumanMessage
|
| 244 |
+
import json
|
| 245 |
+
from utils import (
|
| 246 |
+
get_llm,
|
| 247 |
+
extract_titles_and_summaries,
|
| 248 |
+
perform_sentiment_analysis,
|
| 249 |
+
extract_topics_with_hf,
|
| 250 |
+
compare_articles
|
| 251 |
+
)
|
| 252 |
+
app = FastAPI(title="Company Sentiment API", description="Get company news summaries with sentiment analysis")
|
| 253 |
+
|
| 254 |
+
api_keys = {
|
| 255 |
+
"groq_api_key": None,
|
| 256 |
+
"elevenlabs_api_key": None,
|
| 257 |
+
"huggingface_api_key": None,
|
| 258 |
+
"voice_id":None
|
| 259 |
+
}
|
| 260 |
+
|
| 261 |
+
@app.post("/setAPIKeys")
|
| 262 |
+
def set_api_keys(
|
| 263 |
+
groq_api_key: str = Query(..., description="Enter your Groq API Key"),
|
| 264 |
+
elevenlabs_api_key: str = Query(..., description="Enter your ElevenLabs API Key"),
|
| 265 |
+
huggingface_api_key: str = Query(..., description="Enter your HuggingFace API Key"),
|
| 266 |
+
voice_id: str= Query(..., description="Enter your ElevenLabs Voice ID")
|
| 267 |
+
):
|
| 268 |
+
if not groq_api_key or not elevenlabs_api_key or not huggingface_api_key or not voice_id:
|
| 269 |
+
raise HTTPException(status_code=400, detail="All API keys are required.")
|
| 270 |
+
|
| 271 |
+
# Update API keys in temporary storage
|
| 272 |
+
api_keys["groq_api_key"] = groq_api_key
|
| 273 |
+
api_keys["elevenlabs_api_key"] = elevenlabs_api_key
|
| 274 |
+
api_keys["huggingface_api_key"] = huggingface_api_key
|
| 275 |
+
api_keys["voice_id"] = voice_id
|
| 276 |
+
|
| 277 |
+
return {"message": "API keys updated successfully", "keys": api_keys}
|
| 278 |
+
|
| 279 |
+
if not api_keys["groq_api_key"] or not api_keys["elevenlabs_api_key"] or not api_keys["huggingface_api_key"] or not api_keys['voice_id']:
|
| 280 |
+
raise HTTPException(status_code=400, detail="API keys are required. Please use /setAPIKeys to provide them.")
|
| 281 |
+
|
| 282 |
+
llm = get_llm(api_keys["groq_api_key"])
|
| 283 |
+
JSON_FILE_PATH = "final_summary.json"
|
| 284 |
+
AUDIO_FILE_PATH = "hindi_summary.mp3"
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
def generate_summary(company_name):
|
| 288 |
+
news_articles = extract_titles_and_summaries(company_name)
|
| 289 |
+
news_articles, sentiment_counts = perform_sentiment_analysis(news_articles)
|
| 290 |
+
news_articles = extract_topics_with_hf(news_articles)
|
| 291 |
+
final_summary = compare_articles(news_articles, sentiment_counts,llm)
|
| 292 |
+
|
| 293 |
+
ELEVEN_LABS_API_KEY = api_keys.get("elevenlabs_api_key", "")
|
| 294 |
+
VOICE_ID = api_keys.get("voice_id","")
|
| 295 |
+
hindi_text = ""
|
| 296 |
+
|
| 297 |
+
if ELEVEN_LABS_API_KEY and VOICE_ID:
|
| 298 |
+
client = ElevenLabs(api_key=ELEVEN_LABS_API_KEY)
|
| 299 |
+
|
| 300 |
+
hindi_prompt = f"Just Translate this text into Hindi: {final_summary['Final Sentiment Analysis']}"
|
| 301 |
+
hindi_response = llm.invoke([HumanMessage(content=hindi_prompt)]).content
|
| 302 |
+
hindi_text = hindi_response.strip() if hindi_response else "Translation not available."
|
| 303 |
+
|
| 304 |
+
try:
|
| 305 |
+
audio = client.text_to_speech.convert(
|
| 306 |
+
voice_id=VOICE_ID,
|
| 307 |
+
output_format="mp3_44100_128",
|
| 308 |
+
text=hindi_text,
|
| 309 |
+
model_id="eleven_multilingual_v2",
|
| 310 |
+
)
|
| 311 |
+
|
| 312 |
+
hindi_summary = b"".join(audio) # Store the audio content as binary data
|
| 313 |
+
with open(AUDIO_FILE_PATH, "wb") as f:
|
| 314 |
+
f.write(b"".join(audio))
|
| 315 |
+
|
| 316 |
+
except Exception as e:
|
| 317 |
+
print(f"Error generating audio: {e}")
|
| 318 |
+
hindi_summary = None
|
| 319 |
+
|
| 320 |
+
with open(JSON_FILE_PATH,"w") as f:
|
| 321 |
+
json.dump(final_summary,f,indent=4)
|
| 322 |
+
|
| 323 |
+
return {
|
| 324 |
+
'Company': final_summary["Company"],
|
| 325 |
+
'Articles': [
|
| 326 |
+
{
|
| 327 |
+
'Title': article.get('Title', 'No Title'),
|
| 328 |
+
'Summary': article.get('Summary', 'No Summary'),
|
| 329 |
+
'Sentiment': article.get('Sentiment', 'Unknown'),
|
| 330 |
+
'Score': article.get('Score', 0.0),
|
| 331 |
+
'Topics': article.get('Topics', [])
|
| 332 |
+
}
|
| 333 |
+
for article in final_summary["Articles"]
|
| 334 |
+
],
|
| 335 |
+
'Comparative Sentiment Score': {
|
| 336 |
+
'Sentiment Distribution': sentiment_counts,
|
| 337 |
+
'Coverage Differences': final_summary["Comparative Sentiment Score"].get("Coverage Differences", []),
|
| 338 |
+
'Topic Overlap': {
|
| 339 |
+
'Common Topics': final_summary["Comparative Sentiment Score"].get("Topic Overlap", {}).get("Common Topics", []),
|
| 340 |
+
'Unique Topics': final_summary["Comparative Sentiment Score"].get("Topic Overlap", {}).get("Unique Topics", {})
|
| 341 |
+
}
|
| 342 |
+
},
|
| 343 |
+
'Final Sentiment Analysis': final_summary["Final Sentiment Analysis"],
|
| 344 |
+
'Hindi Summary': hindi_summary
|
| 345 |
+
}
|
| 346 |
+
|
| 347 |
+
@app.get("/")
|
| 348 |
+
def home():
|
| 349 |
+
return {"message": "Welcome to the Company Sentiment API"}
|
| 350 |
+
|
| 351 |
+
@app.get("/generateSummary")
|
| 352 |
+
def get_summary(company_name: str = Query(..., description="Enter company name")):
|
| 353 |
+
structured_summary = generate_summary(company_name)
|
| 354 |
+
return structured_summary
|
| 355 |
+
|
| 356 |
+
@app.get("/downloadJson")
|
| 357 |
+
def download_json():
|
| 358 |
+
return FileResponse(JSON_FILE_PATH, media_type="application/json", filename="final_summary.json")
|
| 359 |
+
|
| 360 |
+
@app.get("/downloadHindiAudio")
|
| 361 |
+
def download_audio():
|
| 362 |
+
return FileResponse(AUDIO_FILE_PATH, media_type="audio/mp3", filename="hindi_summary.mp3")
|
| 363 |
+
|
| 364 |
+
if __name__ == "__main__":
|
| 365 |
+
import uvicorn
|
| 366 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
main.py
ADDED
|
File without changes
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi
|
| 2 |
+
uvicorn
|
| 3 |
+
requests
|
| 4 |
+
bs4
|
| 5 |
+
transformers
|
| 6 |
+
langchain
|
| 7 |
+
langchain_groq
|
| 8 |
+
elevenlabs
|
utils.py
ADDED
|
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import requests
|
| 3 |
+
from bs4 import BeautifulSoup
|
| 4 |
+
from transformers import pipeline
|
| 5 |
+
from langchain.schema import HumanMessage
|
| 6 |
+
from langchain_groq import ChatGroq
|
| 7 |
+
|
| 8 |
+
def get_llm(api_key):
|
| 9 |
+
if not api_key:
|
| 10 |
+
raise ValueError("Groq API key is required to initialize llm.")
|
| 11 |
+
return ChatGroq(api_key=api_key, model="llama-3.1-8b-instant")
|
| 12 |
+
|
| 13 |
+
def extract_titles_and_summaries(company_name, num_articles=10):
|
| 14 |
+
url = f"https://economictimes.indiatimes.com/topic/{company_name}/news"
|
| 15 |
+
try:
|
| 16 |
+
response = requests.get(url)
|
| 17 |
+
if response.status_code != 200:
|
| 18 |
+
print(f"Failed to fetch the webpage. Status code: {response.status_code}")
|
| 19 |
+
return []
|
| 20 |
+
|
| 21 |
+
soup = BeautifulSoup(response.content, "html.parser")
|
| 22 |
+
articles = soup.find_all('div', class_='clr flt topicstry story_list', limit=num_articles)
|
| 23 |
+
extracted_articles = []
|
| 24 |
+
|
| 25 |
+
for article in articles:
|
| 26 |
+
title_tag = article.find('h2')
|
| 27 |
+
if title_tag:
|
| 28 |
+
link_tag = title_tag.find('a')
|
| 29 |
+
title = link_tag.get_text(strip=True) if link_tag else "No Title Found"
|
| 30 |
+
else:
|
| 31 |
+
title = "No Title Found"
|
| 32 |
+
|
| 33 |
+
summary_tag = article.find('p')
|
| 34 |
+
summary = summary_tag.get_text(strip=True) if summary_tag else "No Summary Found"
|
| 35 |
+
|
| 36 |
+
extracted_articles.append({
|
| 37 |
+
"Title": title,
|
| 38 |
+
"Summary": summary
|
| 39 |
+
})
|
| 40 |
+
|
| 41 |
+
return {
|
| 42 |
+
"Company": company_name,
|
| 43 |
+
"Articles": extracted_articles
|
| 44 |
+
}
|
| 45 |
+
except Exception as e:
|
| 46 |
+
print(f"An error occurred: {e}")
|
| 47 |
+
return []
|
| 48 |
+
|
| 49 |
+
def perform_sentiment_analysis(news_data):
|
| 50 |
+
articles = news_data.get("Articles", [])
|
| 51 |
+
pipe = pipeline("text-classification", model="tabularisai/multilingual-sentiment-analysis")
|
| 52 |
+
sentiment_counts = {"Positive": 0, "Negative": 0, "Neutral": 0}
|
| 53 |
+
|
| 54 |
+
for article in articles:
|
| 55 |
+
content = f"{article['Title']} {article['Summary']}"
|
| 56 |
+
sentiment_result = pipe(content)[0]
|
| 57 |
+
|
| 58 |
+
sentiment_map = {
|
| 59 |
+
"positive": "Positive",
|
| 60 |
+
"negative": "Negative",
|
| 61 |
+
"neutral": "Neutral",
|
| 62 |
+
"very positive": "Positive",
|
| 63 |
+
"very negative": "Negative"
|
| 64 |
+
}
|
| 65 |
+
|
| 66 |
+
sentiment = sentiment_map.get(sentiment_result["label"].lower(), "Unknown")
|
| 67 |
+
score = float(sentiment_result["score"])
|
| 68 |
+
|
| 69 |
+
article["Sentiment"] = sentiment
|
| 70 |
+
article["Score"] = score
|
| 71 |
+
|
| 72 |
+
if sentiment in sentiment_counts:
|
| 73 |
+
sentiment_counts[sentiment] += 1
|
| 74 |
+
|
| 75 |
+
return news_data, sentiment_counts
|
| 76 |
+
|
| 77 |
+
def extract_topics_with_hf(news_data):
|
| 78 |
+
structured_data = {
|
| 79 |
+
"Company": news_data.get("Company", "Unknown"),
|
| 80 |
+
"Articles": []
|
| 81 |
+
}
|
| 82 |
+
topic_pipe = pipeline("text-classification", model="valurank/distilroberta-topic-classification")
|
| 83 |
+
articles = news_data.get("Articles", [])
|
| 84 |
+
for article in articles:
|
| 85 |
+
content = f"{article['Title']} {article['Summary']}"
|
| 86 |
+
topics_result = topic_pipe(content, top_k=3)
|
| 87 |
+
topics = [topic["label"] for topic in topics_result] if topics_result else ["Unknown"]
|
| 88 |
+
|
| 89 |
+
structured_data["Articles"].append({
|
| 90 |
+
"Title": article["Title"],
|
| 91 |
+
"Summary": article["Summary"],
|
| 92 |
+
"Sentiment": article.get("Sentiment", "Unknown"),
|
| 93 |
+
"Score": article.get("Score", 0.0),
|
| 94 |
+
"Topics": topics
|
| 95 |
+
})
|
| 96 |
+
return structured_data
|
| 97 |
+
|
| 98 |
+
def generate_final_sentiment(news_data, sentiment_counts,llm):
|
| 99 |
+
company_name = news_data["Company"]
|
| 100 |
+
total_articles = sum(sentiment_counts.values())
|
| 101 |
+
combined_summaries = " ".join([article["Summary"] for article in news_data["Articles"]])
|
| 102 |
+
prompt = f"""
|
| 103 |
+
Based on the analysis of {total_articles} articles about the company "{company_name}":
|
| 104 |
+
- Positive articles: {sentiment_counts['Positive']}
|
| 105 |
+
- Negative articles: {sentiment_counts['Negative']}
|
| 106 |
+
- Neutral articles: {sentiment_counts['Neutral']}
|
| 107 |
+
The following are the summarized key points from the articles: "{combined_summaries}".
|
| 108 |
+
Provide a single, concise summary that integrates the overall sentiment analysis and key news highlights while maintaining a natural flow. Explain its implications for the company's reputation, stock potential, and public perception.
|
| 109 |
+
Respond **ONLY** with a well-structured very concised and very short paragraph in plain text, focus on overall sentiment.
|
| 110 |
+
"""
|
| 111 |
+
response = llm.invoke([HumanMessage(content=prompt)],max_tokens=200)
|
| 112 |
+
final_sentiment = response if response else "Sentiment analysis summary not available."
|
| 113 |
+
return final_sentiment.content # it's a string
|
| 114 |
+
|
| 115 |
+
def extract_json(response):
|
| 116 |
+
try:
|
| 117 |
+
return json.loads(response)
|
| 118 |
+
except json.JSONDecodeError:
|
| 119 |
+
return {}
|
| 120 |
+
|
| 121 |
+
def compare_articles(news_data, sentiment_counts,llm):
|
| 122 |
+
articles = news_data.get("Articles", [])
|
| 123 |
+
all_topics = [set(article["Topics"]) for article in articles]
|
| 124 |
+
common_topics = set.intersection(*all_topics) if all_topics else set()
|
| 125 |
+
topics_prompt = f"""
|
| 126 |
+
Analyze the following article topics and identify **only three** key themes that are common across multiple articles,
|
| 127 |
+
even if they are phrased differently. The topics from each article are:
|
| 128 |
+
{all_topics}
|
| 129 |
+
|
| 130 |
+
Respond **ONLY** with a JSON format:
|
| 131 |
+
{{"CommonTopics": ["topic1", "topic2", "topic3"]}}
|
| 132 |
+
"""
|
| 133 |
+
response = llm.invoke([HumanMessage(content=topics_prompt)]).content
|
| 134 |
+
contextual_common_topics = extract_json(response).get("CommonTopics", list(common_topics))[:3] # Limit to 3 topics
|
| 135 |
+
|
| 136 |
+
total_articles = sum(sentiment_counts.values())
|
| 137 |
+
comparison_prompt = f"""
|
| 138 |
+
Provide a high-level summary comparing {total_articles} news articles about "{news_data['Company']}":
|
| 139 |
+
- Sentiment distribution: {sentiment_counts}
|
| 140 |
+
- Commonly discussed topics across articles: {contextual_common_topics}
|
| 141 |
+
|
| 142 |
+
Consider the following:
|
| 143 |
+
1. Notable contrasts between articles (e.g., major differences in topics and perspectives).
|
| 144 |
+
2. Overall implications for the company's reputation, stock potential, and public perception.
|
| 145 |
+
3. How sentiment varies across articles and its impact.
|
| 146 |
+
|
| 147 |
+
Respond **ONLY** with a concise and insightful summary in this JSON format:
|
| 148 |
+
{{
|
| 149 |
+
"Coverage Differences": [
|
| 150 |
+
{{"Comparison": "Brief contrast between Articles 1 & 2", "Impact": "Concise impact statement"}},
|
| 151 |
+
{{"Comparison": "Brief contrast between Articles 3 & 4", "Impact": "Concise impact statement"}}
|
| 152 |
+
]
|
| 153 |
+
}}
|
| 154 |
+
"""
|
| 155 |
+
response = llm.invoke([HumanMessage(content=comparison_prompt)]).content
|
| 156 |
+
coverage_differences = extract_json(response).get("Coverage Differences", [])
|
| 157 |
+
final_sentiment = generate_final_sentiment(news_data, sentiment_counts,llm)
|
| 158 |
+
return {
|
| 159 |
+
"Company": news_data["Company"],
|
| 160 |
+
"Articles": articles,
|
| 161 |
+
"Comparative Sentiment Score": {
|
| 162 |
+
"Sentiment Distribution": sentiment_counts,
|
| 163 |
+
"Coverage Differences": coverage_differences,
|
| 164 |
+
"Topic Overlap": {
|
| 165 |
+
"Common Topics": contextual_common_topics,
|
| 166 |
+
"Unique Topics": {
|
| 167 |
+
f"Article {i+1}": list(topics - set(contextual_common_topics))
|
| 168 |
+
for i, topics in enumerate(all_topics)
|
| 169 |
+
}
|
| 170 |
+
}
|
| 171 |
+
},
|
| 172 |
+
"Final Sentiment Analysis": final_sentiment
|
| 173 |
+
}
|