File size: 15,482 Bytes
cddc4c2
7276d4c
cddc4c2
7276d4c
 
 
d370ed4
ae00973
 
7276d4c
1ab2f15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7276d4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbaff56
7276d4c
 
 
 
 
 
1ab2f15
 
7276d4c
 
 
 
 
 
 
1ab2f15
 
 
 
 
 
 
 
 
 
 
 
 
 
7276d4c
 
 
 
 
 
 
 
 
1ab2f15
 
 
 
7276d4c
 
 
 
 
cddc4c2
 
 
 
 
fee88b4
ae00973
 
d370ed4
ae00973
 
 
 
 
 
 
 
 
fee88b4
ae00973
 
 
 
 
 
 
 
 
 
 
 
 
66d83b1
ae00973
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbaff56
ae00973
 
 
 
 
 
 
 
 
bbaff56
ae00973
 
 
 
 
 
 
 
 
d370ed4
ae00973
fee88b4
ae00973
fee88b4
ae00973
 
 
 
d370ed4
 
ae00973
 
 
 
 
 
 
fee88b4
cddc4c2
 
fee88b4
ae00973
 
 
 
fee88b4
ae00973
fee88b4
 
 
ae00973
fee88b4
 
ae00973
fee88b4
 
ae00973
fee88b4
ae00973
 
 
 
 
 
 
 
 
fee88b4
ae00973
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fee88b4
ae00973
fee88b4
cddc4c2
fee88b4
ae00973
 
 
 
d370ed4
 
fee88b4
cddc4c2
 
 
 
 
fee88b4
cddc4c2
 
 
 
fee88b4
cddc4c2
fee88b4
 
 
 
cddc4c2
 
 
 
fee88b4
 
cddc4c2
 
 
d370ed4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedModel, PretrainedConfig
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import os
import sys
import transformers

class RMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-5):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.eps = eps

    def forward(self, x):
        variance = x.pow(2).mean(-1, keepdim=True)
        x = x * torch.rsqrt(variance + self.eps)
        return self.weight * x

class LlamaAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.num_kv_heads = config.num_key_value_heads
        self.head_dim = config.hidden_size // config.num_attention_heads
        
        self.q_proj = nn.Linear(config.hidden_size, self.num_heads * self.head_dim, bias=False)
        self.k_proj = nn.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=False)
        self.v_proj = nn.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=False)
        self.o_proj = nn.Linear(self.num_heads * self.head_dim, config.hidden_size, bias=False)

    def forward(self, hidden_states, attention_mask=None):
        batch_size, seq_length, _ = hidden_states.size()
        
        q = self.q_proj(hidden_states).view(batch_size, seq_length, self.num_heads, self.head_dim)
        k = self.k_proj(hidden_states).view(batch_size, seq_length, self.num_kv_heads, self.head_dim)
        v = self.v_proj(hidden_states).view(batch_size, seq_length, self.num_kv_heads, self.head_dim)
        
        if self.num_kv_heads < self.num_heads:
            k = k.repeat_interleave(self.num_heads // self.num_kv_heads, dim=2)
            v = v.repeat_interleave(self.num_heads // self.num_kv_heads, dim=2)
        
        q = q.transpose(1, 2)
        k = k.transpose(1, 2)
        v = v.transpose(1, 2)
        
        attention_scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_dim)
        
        if attention_mask is not None:
            attention_scores = attention_scores + attention_mask
            
        attention_probs = F.softmax(attention_scores, dim=-1)
        context = torch.matmul(attention_probs, v)
        
        context = context.transpose(1, 2).contiguous()
        context = context.view(batch_size, seq_length, -1)
        
        return self.o_proj(context)

class LlamaMLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
        self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
        self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
        self.act_fn = nn.SiLU()

    def forward(self, x):
        gate = self.act_fn(self.gate_proj(x))
        up = self.up_proj(x)
        return self.down_proj(gate * up)

class LlamaDecoderLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.self_attn = LlamaAttention(config)
        self.mlp = LlamaMLP(config)
        self.input_layernorm = RMSNorm(config.hidden_size, config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(config.hidden_size, config.rms_norm_eps)

    def forward(self, hidden_states, attention_mask=None):
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)
        hidden_states = self.self_attn(hidden_states, attention_mask)
        hidden_states = residual + hidden_states
        
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states
        
        return hidden_states

class SmolLM2Config(PretrainedConfig):
    model_type = "smollm2"
    
    def __init__(
        self,
        vocab_size=49152,
        hidden_size=576,
        intermediate_size=1536,
        num_hidden_layers=30,
        num_attention_heads=9,
        num_key_value_heads=3,
        hidden_act="silu",
        max_position_embeddings=2048,
        initializer_range=0.041666666666666664,
        rms_norm_eps=1e-5,
        use_cache=True,
        pad_token_id=None,
        bos_token_id=0,
        eos_token_id=0,
        tie_word_embeddings=True,
        rope_theta=10000.0,
        **kwargs
    ):
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.num_key_value_heads = num_key_value_heads
        self.hidden_act = hidden_act
        self.max_position_embeddings = max_position_embeddings
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs
        )

class SmolLM2ForCausalLM(PreTrainedModel):
    config_class = SmolLM2Config
    _no_split_modules = ["LlamaDecoderLayer"]
    
    def __init__(self, config):
        super().__init__(config)
        self.config = config
        
        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
        self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
        self.norm = RMSNorm(config.hidden_size, config.rms_norm_eps)
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
        
        if config.tie_word_embeddings:
            self.lm_head.weight = self.embed_tokens.weight
            
    def forward(self, input_ids, attention_mask=None, labels=None):
        hidden_states = self.embed_tokens(input_ids)
        
        # Create causal attention mask if none provided
        if attention_mask is None:
            attention_mask = torch.triu(
                torch.ones((input_ids.size(1), input_ids.size(1)), dtype=torch.bool, device=input_ids.device),
                diagonal=1
            )
            attention_mask = attention_mask.unsqueeze(0).unsqueeze(0)
            attention_mask = attention_mask * -1e4
        
        for layer in self.layers:
            hidden_states = layer(hidden_states, attention_mask)
            
        hidden_states = self.norm(hidden_states)
        logits = self.lm_head(hidden_states)
        
        loss = None
        if labels is not None:
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.view(-1))
            
        return logits if loss is None else (loss, logits)

    def prepare_inputs_for_generation(self, input_ids, **kwargs):
        return {
            "input_ids": input_ids,
            "attention_mask": kwargs.get("attention_mask", None)
        }

# Register the model architecture
from transformers import AutoConfig, AutoModelForCausalLM
AutoConfig.register("smollm2", SmolLM2Config)
AutoModelForCausalLM.register(SmolLM2Config, SmolLM2ForCausalLM)

# Load model and tokenizer
model_id = "jatingocodeo/SmolLM2"

def load_model():
    try:
        print("\n=== Starting model loading process ===")
        print(f"Model ID: {model_id}")
        
        print("\n1. Loading tokenizer...")
        try:
            tokenizer = AutoTokenizer.from_pretrained(model_id)
            print("βœ“ Tokenizer loaded successfully")
            print(f"Tokenizer type: {type(tokenizer)}")
            print(f"Vocabulary size: {len(tokenizer)}")
        except Exception as e:
            print(f"Γ— Error loading tokenizer: {str(e)}")
            raise
        
        print("\n2. Adding special tokens...")
        try:
            special_tokens = {
                'pad_token': '[PAD]',
                'eos_token': '</s>',
                'bos_token': '<s>'
            }
            num_added = tokenizer.add_special_tokens(special_tokens)
            print(f"βœ“ Added {num_added} special tokens")
            print(f"Special tokens: {tokenizer.special_tokens_map}")
        except Exception as e:
            print(f"Γ— Error adding special tokens: {str(e)}")
            raise
        
        print("\n3. Creating model configuration...")
        try:
            config = SmolLM2Config(
                pad_token_id=tokenizer.pad_token_id,
                bos_token_id=tokenizer.bos_token_id,
                eos_token_id=tokenizer.eos_token_id
            )
            print("βœ“ Configuration created successfully")
            print(f"Config: {config}")
        except Exception as e:
            print(f"Γ— Error creating configuration: {str(e)}")
            raise
        
        print("\n4. Loading model from Hub...")
        try:
            model = AutoModelForCausalLM.from_pretrained(
                model_id,
                config=config,
                torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
                trust_remote_code=True,
                low_cpu_mem_usage=True,
                local_files_only=False  # Force download from Hub
            )
            print("βœ“ Model loaded successfully")
            print(f"Model type: {type(model)}")
        except Exception as e:
            print(f"Γ— Error loading model: {str(e)}")
            print("Attempting to print model files in Hub repo...")
            from huggingface_hub import list_repo_files
            try:
                files = list_repo_files(model_id)
                print(f"Files in repo: {files}")
            except Exception as hub_e:
                print(f"Error listing repo files: {str(hub_e)}")
            raise
        
        print("\n5. Moving model to device...")
        try:
            device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
            print(f"Selected device: {device}")
            model = model.to(device)
            print("βœ“ Model moved to device successfully")
        except Exception as e:
            print(f"Γ— Error moving model to device: {str(e)}")
            raise
        
        print("\n6. Resizing token embeddings...")
        try:
            old_size = model.get_input_embeddings().weight.shape[0]
            model.resize_token_embeddings(len(tokenizer))
            new_size = model.get_input_embeddings().weight.shape[0]
            print(f"βœ“ Token embeddings resized from {old_size} to {new_size}")
        except Exception as e:
            print(f"Γ— Error resizing token embeddings: {str(e)}")
            raise
        
        print("\n=== Model loading completed successfully! ===")
        return model, tokenizer
        
    except Exception as e:
        print("\n!!! ERROR IN MODEL LOADING !!!")
        print(f"Error type: {type(e).__name__}")
        print(f"Error message: {str(e)}")
        print("\nFull traceback:")
        import traceback
        traceback.print_exc()
        print("\nAdditional debug info:")
        print(f"Python version: {sys.version}")
        print(f"PyTorch version: {torch.__version__}")
        print(f"Transformers version: {transformers.__version__}")
        print(f"CUDA available: {torch.cuda.is_available()}")
        if torch.cuda.is_available():
            print(f"CUDA version: {torch.version.cuda}")
        raise

def generate_text(prompt, max_length=100, temperature=0.7, top_k=50):
    try:
        print("\n=== Starting text generation ===")
        print(f"Input prompt: {prompt}")
        print(f"Parameters: max_length={max_length}, temperature={temperature}, top_k={top_k}")
        
        if not hasattr(generate_text, "model"):
            print("\n1. First call - loading model...")
            generate_text.model, generate_text.tokenizer = load_model()
        
        if not prompt.strip():
            print("Γ— Empty prompt received")
            return "Please enter a prompt."
        
        print("\n2. Processing prompt...")
        if not prompt.startswith(generate_text.tokenizer.bos_token):
            prompt = generate_text.tokenizer.bos_token + prompt
            print("Added BOS token to prompt")
        
        print("\n3. Encoding prompt...")
        try:
            input_ids = generate_text.tokenizer.encode(prompt, return_tensors="pt", truncation=True, max_length=2048)
            print(f"Encoded shape: {input_ids.shape}")
            input_ids = input_ids.to(generate_text.model.device)
            print("βœ“ Encoding successful")
        except Exception as e:
            print(f"Γ— Error encoding prompt: {str(e)}")
            raise
        
        print("\n4. Generating text...")
        try:
            with torch.no_grad():
                output_ids = generate_text.model.generate(
                    input_ids,
                    max_length=min(max_length + len(input_ids[0]), 2048),
                    temperature=temperature,
                    top_k=top_k,
                    do_sample=True,
                    pad_token_id=generate_text.tokenizer.pad_token_id,
                    eos_token_id=generate_text.tokenizer.eos_token_id,
                    num_return_sequences=1
                )
            print(f"Generation shape: {output_ids.shape}")
        except Exception as e:
            print(f"Γ— Error during generation: {str(e)}")
            raise
        
        print("\n5. Decoding output...")
        try:
            generated_text = generate_text.tokenizer.decode(output_ids[0], skip_special_tokens=True)
            print("βœ“ Decoding successful")
            print(f"Output length: {len(generated_text)}")
        except Exception as e:
            print(f"Γ— Error decoding output: {str(e)}")
            raise
        
        print("\n=== Generation completed successfully! ===")
        return generated_text.strip()
    
    except Exception as e:
        print("\n!!! ERROR IN TEXT GENERATION !!!")
        print(f"Error type: {type(e).__name__}")
        print(f"Error message: {str(e)}")
        print("\nFull traceback:")
        import traceback
        traceback.print_exc()
        return f"An error occurred: {str(e)}"

# Create Gradio interface
iface = gr.Interface(
    fn=generate_text,
    inputs=[
        gr.Textbox(label="Prompt", placeholder="Enter your prompt here...", lines=2),
        gr.Slider(minimum=10, maximum=200, value=100, step=1, label="Max Length"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top K"),
    ],
    outputs=gr.Textbox(label="Generated Text", lines=5),
    title="SmolLM2 Text Generator",
    description="""Generate text using the fine-tuned SmolLM2 model.
    - Max Length: Controls the length of generated text
    - Temperature: Controls randomness (higher = more creative)
    - Top K: Controls diversity of word choices""",
    examples=[
        ["Once upon a time", 100, 0.7, 50],
        ["The quick brown fox", 150, 0.8, 40],
        ["In a galaxy far far away", 200, 0.9, 30],
    ],
    allow_flagging="never"
)

if __name__ == "__main__":
    print("Starting Gradio interface...")
    iface.launch(debug=True)