Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,44 +3,9 @@ import torch
|
|
| 3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
from peft import PeftModel, PeftConfig
|
| 5 |
from PIL import Image
|
| 6 |
-
import requests
|
| 7 |
-
from io import BytesIO
|
| 8 |
import torchvision.datasets as datasets
|
| 9 |
-
import numpy as np
|
| 10 |
|
| 11 |
-
|
| 12 |
-
from model.siglip import SigLIPModel
|
| 13 |
-
|
| 14 |
-
def get_cifar_examples():
|
| 15 |
-
# Load CIFAR10 test set
|
| 16 |
-
cifar10_test = datasets.CIFAR10(root='./data', train=False, download=True)
|
| 17 |
-
|
| 18 |
-
# CIFAR10 classes
|
| 19 |
-
classes = ['airplane', 'automobile', 'bird', 'cat', 'deer',
|
| 20 |
-
'dog', 'frog', 'horse', 'ship', 'truck']
|
| 21 |
-
|
| 22 |
-
# Get one example from each class
|
| 23 |
-
examples = []
|
| 24 |
-
used_classes = set()
|
| 25 |
-
|
| 26 |
-
for idx in range(len(cifar10_test)):
|
| 27 |
-
img, label = cifar10_test[idx]
|
| 28 |
-
if classes[label] not in used_classes:
|
| 29 |
-
# Save the image temporarily
|
| 30 |
-
img_path = f"examples/{classes[label]}_example.jpg"
|
| 31 |
-
img.save(img_path)
|
| 32 |
-
examples.append(img_path)
|
| 33 |
-
used_classes.add(classes[label])
|
| 34 |
-
|
| 35 |
-
if len(used_classes) == 10: # We have one example from each class
|
| 36 |
-
break
|
| 37 |
-
|
| 38 |
-
return examples
|
| 39 |
-
|
| 40 |
-
def load_models():
|
| 41 |
-
# Load SigLIP model
|
| 42 |
-
siglip = SigLIPModel()
|
| 43 |
-
|
| 44 |
# Load base Phi model
|
| 45 |
base_model = AutoModelForCausalLM.from_pretrained(
|
| 46 |
"microsoft/Phi-3-mini-4k-instruct",
|
|
@@ -58,19 +23,16 @@ def load_models():
|
|
| 58 |
|
| 59 |
tokenizer = AutoTokenizer.from_pretrained("jatingocodeo/phi-vlm")
|
| 60 |
|
| 61 |
-
return
|
| 62 |
|
| 63 |
-
def generate_description(image,
|
| 64 |
# Convert image to RGB if needed
|
| 65 |
if image.mode != "RGB":
|
| 66 |
image = image.convert("RGB")
|
| 67 |
|
| 68 |
-
# Resize image to match
|
| 69 |
image = image.resize((32, 32))
|
| 70 |
|
| 71 |
-
# Get image embedding from SigLIP
|
| 72 |
-
image_embedding = siglip.encode_image(image)
|
| 73 |
-
|
| 74 |
# Prepare prompt
|
| 75 |
prompt = """Below is an image. Please describe it in detail.
|
| 76 |
|
|
@@ -88,9 +50,8 @@ Description: """
|
|
| 88 |
|
| 89 |
# Generate description
|
| 90 |
with torch.no_grad():
|
| 91 |
-
outputs = model(
|
| 92 |
**inputs,
|
| 93 |
-
image_embeddings=image_embedding.unsqueeze(0),
|
| 94 |
max_new_tokens=100,
|
| 95 |
temperature=0.7,
|
| 96 |
do_sample=True,
|
|
@@ -101,16 +62,37 @@ Description: """
|
|
| 101 |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 102 |
return generated_text.split("Description: ")[-1].strip()
|
| 103 |
|
| 104 |
-
# Load
|
| 105 |
-
print("Loading
|
| 106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
# Create Gradio interface
|
| 109 |
def process_image(image):
|
| 110 |
-
|
| 111 |
-
return description
|
| 112 |
|
| 113 |
-
# Get
|
| 114 |
examples = get_cifar_examples()
|
| 115 |
|
| 116 |
# Define interface
|
|
@@ -121,7 +103,7 @@ iface = gr.Interface(
|
|
| 121 |
title="Image Description Generator",
|
| 122 |
description="""Upload an image and get a detailed description generated by our fine-tuned VLM model.
|
| 123 |
Below are sample images from CIFAR10 dataset that you can try.""",
|
| 124 |
-
examples=[[ex] for ex in examples]
|
| 125 |
)
|
| 126 |
|
| 127 |
# Launch the interface
|
|
|
|
| 3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
from peft import PeftModel, PeftConfig
|
| 5 |
from PIL import Image
|
|
|
|
|
|
|
| 6 |
import torchvision.datasets as datasets
|
|
|
|
| 7 |
|
| 8 |
+
def load_model():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
# Load base Phi model
|
| 10 |
base_model = AutoModelForCausalLM.from_pretrained(
|
| 11 |
"microsoft/Phi-3-mini-4k-instruct",
|
|
|
|
| 23 |
|
| 24 |
tokenizer = AutoTokenizer.from_pretrained("jatingocodeo/phi-vlm")
|
| 25 |
|
| 26 |
+
return model, tokenizer
|
| 27 |
|
| 28 |
+
def generate_description(image, model, tokenizer):
|
| 29 |
# Convert image to RGB if needed
|
| 30 |
if image.mode != "RGB":
|
| 31 |
image = image.convert("RGB")
|
| 32 |
|
| 33 |
+
# Resize image to match training size
|
| 34 |
image = image.resize((32, 32))
|
| 35 |
|
|
|
|
|
|
|
|
|
|
| 36 |
# Prepare prompt
|
| 37 |
prompt = """Below is an image. Please describe it in detail.
|
| 38 |
|
|
|
|
| 50 |
|
| 51 |
# Generate description
|
| 52 |
with torch.no_grad():
|
| 53 |
+
outputs = model.generate(
|
| 54 |
**inputs,
|
|
|
|
| 55 |
max_new_tokens=100,
|
| 56 |
temperature=0.7,
|
| 57 |
do_sample=True,
|
|
|
|
| 62 |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 63 |
return generated_text.split("Description: ")[-1].strip()
|
| 64 |
|
| 65 |
+
# Load model
|
| 66 |
+
print("Loading model...")
|
| 67 |
+
model, tokenizer = load_model()
|
| 68 |
+
|
| 69 |
+
# Get CIFAR10 examples
|
| 70 |
+
def get_cifar_examples():
|
| 71 |
+
cifar10_test = datasets.CIFAR10(root='./data', train=False, download=True)
|
| 72 |
+
classes = ['airplane', 'automobile', 'bird', 'cat', 'deer',
|
| 73 |
+
'dog', 'frog', 'horse', 'ship', 'truck']
|
| 74 |
+
|
| 75 |
+
examples = []
|
| 76 |
+
used_classes = set()
|
| 77 |
+
|
| 78 |
+
for idx in range(len(cifar10_test)):
|
| 79 |
+
img, label = cifar10_test[idx]
|
| 80 |
+
if classes[label] not in used_classes:
|
| 81 |
+
img_path = f"examples/{classes[label]}_example.jpg"
|
| 82 |
+
img.save(img_path)
|
| 83 |
+
examples.append(img_path)
|
| 84 |
+
used_classes.add(classes[label])
|
| 85 |
+
|
| 86 |
+
if len(used_classes) == 10:
|
| 87 |
+
break
|
| 88 |
+
|
| 89 |
+
return examples
|
| 90 |
|
| 91 |
# Create Gradio interface
|
| 92 |
def process_image(image):
|
| 93 |
+
return generate_description(image, model, tokenizer)
|
|
|
|
| 94 |
|
| 95 |
+
# Get examples
|
| 96 |
examples = get_cifar_examples()
|
| 97 |
|
| 98 |
# Define interface
|
|
|
|
| 103 |
title="Image Description Generator",
|
| 104 |
description="""Upload an image and get a detailed description generated by our fine-tuned VLM model.
|
| 105 |
Below are sample images from CIFAR10 dataset that you can try.""",
|
| 106 |
+
examples=[[ex] for ex in examples]
|
| 107 |
)
|
| 108 |
|
| 109 |
# Launch the interface
|