import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel, PeftConfig from PIL import Image import torchvision.datasets as datasets def load_model(): # Load base Phi model base_model = AutoModelForCausalLM.from_pretrained( "microsoft/Phi-3-mini-4k-instruct", trust_remote_code=True, device_map="auto", torch_dtype=torch.float32 ) # Load our fine-tuned LoRA adapter model = PeftModel.from_pretrained( base_model, "jatingocodeo/phi-vlm", # Your uploaded model device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("jatingocodeo/phi-vlm") return model, tokenizer def generate_description(image, model, tokenizer): # Convert image to RGB if needed if image.mode != "RGB": image = image.convert("RGB") # Resize image to match training size image = image.resize((32, 32)) # Prepare prompt prompt = """Below is an image. Please describe it in detail. Image: Description: """ # Tokenize input inputs = tokenizer( prompt, return_tensors="pt", padding=True, truncation=True, max_length=128 ).to(model.device) # Generate description with torch.no_grad(): outputs = model.generate( **inputs, max_new_tokens=100, temperature=0.7, do_sample=True, top_p=0.9 ) # Decode and return the generated text generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return generated_text.split("Description: ")[-1].strip() # Load model print("Loading model...") model, tokenizer = load_model() # Get CIFAR10 examples def get_cifar_examples(): cifar10_test = datasets.CIFAR10(root='./data', train=False, download=True) classes = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] examples = [] used_classes = set() for idx in range(len(cifar10_test)): img, label = cifar10_test[idx] if classes[label] not in used_classes: img_path = f"examples/{classes[label]}_example.jpg" img.save(img_path) examples.append(img_path) used_classes.add(classes[label]) if len(used_classes) == 10: break return examples # Create Gradio interface def process_image(image): return generate_description(image, model, tokenizer) # Get examples examples = get_cifar_examples() # Define interface iface = gr.Interface( fn=process_image, inputs=gr.Image(type="pil"), outputs=gr.Textbox(label="Generated Description"), title="Image Description Generator", description="""Upload an image and get a detailed description generated by our fine-tuned VLM model. Below are sample images from CIFAR10 dataset that you can try.""", examples=[[ex] for ex in examples] ) # Launch the interface if __name__ == "__main__": iface.launch()