Spaces:
Sleeping
Sleeping
File size: 2,144 Bytes
6855cb4 96d605c 6855cb4 9437ceb 6855cb4 9247ac9 6855cb4 9247ac9 6855cb4 96d605c 9247ac9 6855cb4 9437ceb 6855cb4 9247ac9 6855cb4 9247ac9 6855cb4 9247ac9 6855cb4 96d605c 6855cb4 9247ac9 6855cb4 96d605c 9247ac9 6855cb4 96d605c 9247ac9 96d605c 9247ac9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
# AI assistant with a RAG system to query information from
# the gwIAS search pipeline
# using Langchain and deployed with Gradio
from rag import RAG, load_docs
from langchain_community.embeddings import HuggingFaceInstructEmbeddings
from langchain_community.chat_models import ChatOpenAI
import gradio as gr
# Load the documentation
docs = load_docs()
print("Pages loaded:", len(docs))
# LLM model
llm = ChatOpenAI(model="gpt-4") # Fixed model name to use a real model
# Embeddings
embed_model = "sentence-transformers/multi-qa-distilbert-cos-v1"
# embed_model = "nvidia/NV-Embed-v2"
# text-embedding-3-small
embeddings = HuggingFaceInstructEmbeddings(model_name=embed_model)
# RAG chain
rag_chain = RAG(llm, docs, embeddings)
# Function to handle prompt and query the RAG chain
def handle_prompt(message, history):
try:
# Stream output
out = ""
for chunk in rag_chain.stream(message):
out += chunk
yield out
except Exception as e:
raise gr.Error(f"An error occurred: {str(e)}")
if __name__ == "__main__":
# Predefined messages and examples
description = "AI powered assistant to help with [gwIAS](https://github.com/JayWadekar/gwIAS-HM) gravitational wave search pipeline."
greeting_message = "Hi, I'm the gwIAS Bot, I'm here to assist you with the search pipeline."
example_questions = [
"Can you give me the code for calculating coherent score?",
"Which module in the code is used for collecting coincident triggers?",
"How are template banks constructed?"
]
# Define customized Gradio chatbot
chatbot = gr.Chatbot(
[{"role": "assistant", "content": greeting_message}],
type="messages",
avatar_images=["ims/userpic.png", "ims/gwIASlogo.jpg"],
height="60vh"
)
# Define Gradio interface
demo = gr.ChatInterface(
fn=handle_prompt,
chatbot=chatbot,
title="gwIAS DocBot",
description=description,
examples=example_questions,
theme=gr.themes.Soft(),
fill_height=True
)
# Launch the interface
demo.launch()
|