Spaces:
Running
on
L40S
Running
on
L40S
Update app.py
Browse files
app.py
CHANGED
@@ -7,6 +7,7 @@ import spaces
|
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
import numpy as np
|
9 |
import random
|
|
|
10 |
|
11 |
MODEL_ID = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
|
12 |
LORA_REPO_ID = "Kijai/WanVideo_comfy"
|
@@ -28,8 +29,31 @@ MOD_VALUE = 32
|
|
28 |
DEFAULT_H_SLIDER_VALUE = 384 # 512
|
29 |
DEFAULT_W_SLIDER_VALUE = 640 # 896
|
30 |
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
MAX_SEED = np.iinfo(np.int32).max
|
34 |
|
35 |
FIXED_FPS = 24
|
@@ -62,7 +86,7 @@ def generate_video(prompt, height, width,
|
|
62 |
|
63 |
This function takes a text prompt and generates a video based on the provided
|
64 |
prompt and parameters. It uses the Wan 2.1 1.3B Text-to-Video model with CausVid LoRA
|
65 |
-
for fast generation in
|
66 |
|
67 |
Args:
|
68 |
prompt (str): Text prompt describing the desired video content.
|
@@ -97,7 +121,14 @@ def generate_video(prompt, height, width,
|
|
97 |
- Generation time varies based on steps and duration (see get_duration function)
|
98 |
"""
|
99 |
if not prompt or prompt.strip() == "":
|
100 |
-
raise gr.Error("Please enter a text prompt.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
|
103 |
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
|
@@ -120,21 +151,45 @@ def generate_video(prompt, height, width,
|
|
120 |
return video_path, current_seed
|
121 |
|
122 |
with gr.Blocks() as demo:
|
123 |
-
gr.Markdown("# InstaVideo")
|
124 |
-
gr.Markdown("This
|
|
|
|
|
|
|
|
|
|
|
125 |
with gr.Row():
|
126 |
with gr.Column():
|
127 |
prompt_input = gr.Textbox(label="Prompt", value=default_prompt_t2v, placeholder="Describe the video you want to generate...")
|
128 |
-
duration_seconds_input = gr.Slider(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
with gr.Accordion("Advanced Settings", open=False):
|
131 |
negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
|
132 |
seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
|
133 |
randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
|
134 |
with gr.Row():
|
135 |
-
height_input = gr.Slider(
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
guidance_scale_input = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="Guidance Scale", visible=False)
|
139 |
|
140 |
generate_button = gr.Button("Generate Video", variant="primary")
|
@@ -148,13 +203,26 @@ with gr.Blocks() as demo:
|
|
148 |
]
|
149 |
generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])
|
150 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
gr.Examples(
|
152 |
-
examples=
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
inputs=[prompt_input, height_input, width_input], outputs=[video_output, seed_input], fn=generate_video, cache_examples="lazy"
|
158 |
)
|
159 |
|
160 |
if __name__ == "__main__":
|
|
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
import numpy as np
|
9 |
import random
|
10 |
+
import os
|
11 |
|
12 |
MODEL_ID = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
|
13 |
LORA_REPO_ID = "Kijai/WanVideo_comfy"
|
|
|
29 |
DEFAULT_H_SLIDER_VALUE = 384 # 512
|
30 |
DEFAULT_W_SLIDER_VALUE = 640 # 896
|
31 |
|
32 |
+
# Environment variable check
|
33 |
+
IS_ORIGINAL_SPACE = os.environ.get("IS_ORIGINAL_SPACE", "False") == "True"
|
34 |
+
|
35 |
+
# Original limits
|
36 |
+
ORIGINAL_SLIDER_MIN_H, ORIGINAL_SLIDER_MAX_H = 128, 1280
|
37 |
+
ORIGINAL_SLIDER_MIN_W, ORIGINAL_SLIDER_MAX_W = 128, 1280
|
38 |
+
ORIGINAL_MAX_DURATION = round(81/24, 1) # MAX_FRAMES_MODEL/FIXED_FPS
|
39 |
+
|
40 |
+
# Limited space constants
|
41 |
+
LIMITED_MAX_RESOLUTION = 640
|
42 |
+
LIMITED_MAX_DURATION = 2.0
|
43 |
+
LIMITED_MAX_STEPS = 3
|
44 |
+
|
45 |
+
# Set limits based on environment variable
|
46 |
+
if IS_ORIGINAL_SPACE:
|
47 |
+
SLIDER_MIN_H, SLIDER_MAX_H = ORIGINAL_SLIDER_MIN_H, ORIGINAL_SLIDER_MAX_H
|
48 |
+
SLIDER_MIN_W, SLIDER_MAX_W = ORIGINAL_SLIDER_MIN_W, ORIGINAL_SLIDER_MAX_W
|
49 |
+
MAX_DURATION = ORIGINAL_MAX_DURATION
|
50 |
+
MAX_STEPS = 8
|
51 |
+
else:
|
52 |
+
SLIDER_MIN_H, SLIDER_MAX_H = 128, LIMITED_MAX_RESOLUTION
|
53 |
+
SLIDER_MIN_W, SLIDER_MAX_W = 128, LIMITED_MAX_RESOLUTION
|
54 |
+
MAX_DURATION = LIMITED_MAX_DURATION
|
55 |
+
MAX_STEPS = LIMITED_MAX_STEPS
|
56 |
+
|
57 |
MAX_SEED = np.iinfo(np.int32).max
|
58 |
|
59 |
FIXED_FPS = 24
|
|
|
86 |
|
87 |
This function takes a text prompt and generates a video based on the provided
|
88 |
prompt and parameters. It uses the Wan 2.1 1.3B Text-to-Video model with CausVid LoRA
|
89 |
+
for fast generation in 3-8 steps.
|
90 |
|
91 |
Args:
|
92 |
prompt (str): Text prompt describing the desired video content.
|
|
|
121 |
- Generation time varies based on steps and duration (see get_duration function)
|
122 |
"""
|
123 |
if not prompt or prompt.strip() == "":
|
124 |
+
raise gr.Error("Please enter a text prompt. Try to use long and precise descriptions.")
|
125 |
+
|
126 |
+
# Apply limits based on environment variable
|
127 |
+
if not IS_ORIGINAL_SPACE:
|
128 |
+
height = min(height, LIMITED_MAX_RESOLUTION)
|
129 |
+
width = min(width, LIMITED_MAX_RESOLUTION)
|
130 |
+
duration_seconds = min(duration_seconds, LIMITED_MAX_DURATION)
|
131 |
+
steps = min(steps, LIMITED_MAX_STEPS)
|
132 |
|
133 |
target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
|
134 |
target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
|
|
|
151 |
return video_path, current_seed
|
152 |
|
153 |
with gr.Blocks() as demo:
|
154 |
+
gr.Markdown("# ⚡ InstaVideo")
|
155 |
+
gr.Markdown("This Gradio space is forked by [wan2-1-fast from multimodalart](https://huggingface.co/spaces/multimodalart/wan2-1-fast), and is powered by the Wan CausVid LoRA [from Kijai](https://huggingface.co/Kijai/WanVideo_comfy/blob/main/Wan21_CausVid_bidirect2_T2V_1_3B_lora_rank32.safetensors).")
|
156 |
+
|
157 |
+
# Add notice for limited spaces
|
158 |
+
if not IS_ORIGINAL_SPACE:
|
159 |
+
gr.Markdown("This free public demo limits the resolution to 640x640, duration to 2s, and inference steps to 3. For full capabilities please duplicate this space.")
|
160 |
+
|
161 |
with gr.Row():
|
162 |
with gr.Column():
|
163 |
prompt_input = gr.Textbox(label="Prompt", value=default_prompt_t2v, placeholder="Describe the video you want to generate...")
|
164 |
+
duration_seconds_input = gr.Slider(
|
165 |
+
minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1),
|
166 |
+
maximum=MAX_DURATION,
|
167 |
+
step=0.1,
|
168 |
+
value=2,
|
169 |
+
label="Duration (seconds)",
|
170 |
+
info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps."
|
171 |
+
)
|
172 |
|
173 |
with gr.Accordion("Advanced Settings", open=False):
|
174 |
negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
|
175 |
seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
|
176 |
randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
|
177 |
with gr.Row():
|
178 |
+
height_input = gr.Slider(
|
179 |
+
minimum=SLIDER_MIN_H,
|
180 |
+
maximum=SLIDER_MAX_H,
|
181 |
+
step=MOD_VALUE,
|
182 |
+
value=min(DEFAULT_H_SLIDER_VALUE, SLIDER_MAX_H),
|
183 |
+
label=f"Output Height (multiple of {MOD_VALUE})"
|
184 |
+
)
|
185 |
+
width_input = gr.Slider(
|
186 |
+
minimum=SLIDER_MIN_W,
|
187 |
+
maximum=SLIDER_MAX_W,
|
188 |
+
step=MOD_VALUE,
|
189 |
+
value=min(DEFAULT_W_SLIDER_VALUE, SLIDER_MAX_W),
|
190 |
+
label=f"Output Width (multiple of {MOD_VALUE})"
|
191 |
+
)
|
192 |
+
steps_slider = gr.Slider(minimum=1, maximum=MAX_STEPS, step=1, value=3, label="Inference Steps")
|
193 |
guidance_scale_input = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="Guidance Scale", visible=False)
|
194 |
|
195 |
generate_button = gr.Button("Generate Video", variant="primary")
|
|
|
203 |
]
|
204 |
generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])
|
205 |
|
206 |
+
# Adjust examples based on space limits
|
207 |
+
example_configs = [
|
208 |
+
["a majestic eagle soaring through mountain peaks, cinematic aerial view", 896, 512],
|
209 |
+
["a serene ocean wave crashing on a sandy beach at sunset", 448, 832],
|
210 |
+
["a field of flowers swaying in the wind, spring morning light", 512, 896],
|
211 |
+
]
|
212 |
+
|
213 |
+
if not IS_ORIGINAL_SPACE:
|
214 |
+
# Limit example resolutions for limited spaces
|
215 |
+
example_configs = [
|
216 |
+
[example[0], min(example[1], LIMITED_MAX_RESOLUTION), min(example[2], LIMITED_MAX_RESOLUTION)]
|
217 |
+
for example in example_configs
|
218 |
+
]
|
219 |
+
|
220 |
gr.Examples(
|
221 |
+
examples=example_configs,
|
222 |
+
inputs=[prompt_input, height_input, width_input],
|
223 |
+
outputs=[video_output, seed_input],
|
224 |
+
fn=generate_video,
|
225 |
+
cache_examples="lazy"
|
|
|
226 |
)
|
227 |
|
228 |
if __name__ == "__main__":
|