File size: 17,475 Bytes
4bf9661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
import torch
from einops import rearrange, repeat
from .sd3_dit import TimestepEmbeddings
from .attention import Attention
from .utils import load_state_dict_from_folder
from .tiler import TileWorker2Dto3D
import numpy as np



class CogPatchify(torch.nn.Module):
    def __init__(self, dim_in, dim_out, patch_size) -> None:
        super().__init__()
        self.proj = torch.nn.Conv3d(dim_in, dim_out, kernel_size=(1, patch_size, patch_size), stride=(1, patch_size, patch_size))

    def forward(self, hidden_states):
        hidden_states = self.proj(hidden_states)
        hidden_states = rearrange(hidden_states, "B C T H W -> B (T H W) C")
        return hidden_states
    


class CogAdaLayerNorm(torch.nn.Module):
    def __init__(self, dim, dim_cond, single=False):
        super().__init__()
        self.single = single
        self.linear = torch.nn.Linear(dim_cond, dim * (2 if single else 6))
        self.norm = torch.nn.LayerNorm(dim, elementwise_affine=True, eps=1e-5)


    def forward(self, hidden_states, prompt_emb, emb):
        emb = self.linear(torch.nn.functional.silu(emb))
        if self.single:
            shift, scale = emb.unsqueeze(1).chunk(2, dim=2)
            hidden_states = self.norm(hidden_states) * (1 + scale) + shift
            return hidden_states
        else:
            shift_a, scale_a, gate_a, shift_b, scale_b, gate_b = emb.unsqueeze(1).chunk(6, dim=2)
            hidden_states = self.norm(hidden_states) * (1 + scale_a) + shift_a
            prompt_emb = self.norm(prompt_emb) * (1 + scale_b) + shift_b
            return hidden_states, prompt_emb, gate_a, gate_b



class CogDiTBlock(torch.nn.Module):
    def __init__(self, dim, dim_cond, num_heads):
        super().__init__()
        self.norm1 = CogAdaLayerNorm(dim, dim_cond)
        self.attn1 = Attention(q_dim=dim, num_heads=48, head_dim=dim//num_heads, bias_q=True, bias_kv=True, bias_out=True)
        self.norm_q = torch.nn.LayerNorm((dim//num_heads,), eps=1e-06, elementwise_affine=True)
        self.norm_k = torch.nn.LayerNorm((dim//num_heads,), eps=1e-06, elementwise_affine=True)

        self.norm2 = CogAdaLayerNorm(dim, dim_cond)
        self.ff = torch.nn.Sequential(
            torch.nn.Linear(dim, dim*4),
            torch.nn.GELU(approximate="tanh"),
            torch.nn.Linear(dim*4, dim)
        )
    

    def apply_rotary_emb(self, x, freqs_cis):
        cos, sin = freqs_cis  # [S, D]
        cos = cos[None, None]
        sin = sin[None, None]
        cos, sin = cos.to(x.device), sin.to(x.device)
        x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1)  # [B, S, H, D//2]
        x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
        out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
        return out
    

    def process_qkv(self, q, k, v, image_rotary_emb, text_seq_length):
        q = self.norm_q(q)
        k = self.norm_k(k)
        q[:, :, text_seq_length:] = self.apply_rotary_emb(q[:, :, text_seq_length:], image_rotary_emb)
        k[:, :, text_seq_length:] = self.apply_rotary_emb(k[:, :, text_seq_length:], image_rotary_emb)
        return q, k, v
        

    def forward(self, hidden_states, prompt_emb, time_emb, image_rotary_emb):
        # Attention
        norm_hidden_states, norm_encoder_hidden_states, gate_a, gate_b = self.norm1(
            hidden_states, prompt_emb, time_emb
        )
        attention_io = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1)
        attention_io = self.attn1(
            attention_io,
            qkv_preprocessor=lambda q, k, v: self.process_qkv(q, k, v, image_rotary_emb, prompt_emb.shape[1])
        )

        hidden_states = hidden_states + gate_a * attention_io[:, prompt_emb.shape[1]:]
        prompt_emb = prompt_emb + gate_b * attention_io[:, :prompt_emb.shape[1]]

        # Feed forward
        norm_hidden_states, norm_encoder_hidden_states, gate_a, gate_b = self.norm2(
            hidden_states, prompt_emb, time_emb
        )
        ff_io = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1)
        ff_io = self.ff(ff_io)

        hidden_states = hidden_states + gate_a * ff_io[:, prompt_emb.shape[1]:]
        prompt_emb = prompt_emb + gate_b * ff_io[:, :prompt_emb.shape[1]]

        return hidden_states, prompt_emb



class CogDiT(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.patchify = CogPatchify(16, 3072, 2)
        self.time_embedder = TimestepEmbeddings(3072, 512)
        self.context_embedder = torch.nn.Linear(4096, 3072)
        self.blocks = torch.nn.ModuleList([CogDiTBlock(3072, 512, 48) for _ in range(42)])
        self.norm_final = torch.nn.LayerNorm((3072,), eps=1e-05, elementwise_affine=True)
        self.norm_out = CogAdaLayerNorm(3072, 512, single=True)
        self.proj_out = torch.nn.Linear(3072, 64, bias=True)


    def get_resize_crop_region_for_grid(self, src, tgt_width, tgt_height):
        tw = tgt_width
        th = tgt_height
        h, w = src
        r = h / w
        if r > (th / tw):
            resize_height = th
            resize_width = int(round(th / h * w))
        else:
            resize_width = tw
            resize_height = int(round(tw / w * h))

        crop_top = int(round((th - resize_height) / 2.0))
        crop_left = int(round((tw - resize_width) / 2.0))

        return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)
    

    def get_3d_rotary_pos_embed(
        self, embed_dim, crops_coords, grid_size, temporal_size, theta: int = 10000, use_real: bool = True
    ):
        start, stop = crops_coords
        grid_h = np.linspace(start[0], stop[0], grid_size[0], endpoint=False, dtype=np.float32)
        grid_w = np.linspace(start[1], stop[1], grid_size[1], endpoint=False, dtype=np.float32)
        grid_t = np.linspace(0, temporal_size, temporal_size, endpoint=False, dtype=np.float32)

        # Compute dimensions for each axis
        dim_t = embed_dim // 4
        dim_h = embed_dim // 8 * 3
        dim_w = embed_dim // 8 * 3

        # Temporal frequencies
        freqs_t = 1.0 / (theta ** (torch.arange(0, dim_t, 2).float() / dim_t))
        grid_t = torch.from_numpy(grid_t).float()
        freqs_t = torch.einsum("n , f -> n f", grid_t, freqs_t)
        freqs_t = freqs_t.repeat_interleave(2, dim=-1)

        # Spatial frequencies for height and width
        freqs_h = 1.0 / (theta ** (torch.arange(0, dim_h, 2).float() / dim_h))
        freqs_w = 1.0 / (theta ** (torch.arange(0, dim_w, 2).float() / dim_w))
        grid_h = torch.from_numpy(grid_h).float()
        grid_w = torch.from_numpy(grid_w).float()
        freqs_h = torch.einsum("n , f -> n f", grid_h, freqs_h)
        freqs_w = torch.einsum("n , f -> n f", grid_w, freqs_w)
        freqs_h = freqs_h.repeat_interleave(2, dim=-1)
        freqs_w = freqs_w.repeat_interleave(2, dim=-1)

        # Broadcast and concatenate tensors along specified dimension
        def broadcast(tensors, dim=-1):
            num_tensors = len(tensors)
            shape_lens = {len(t.shape) for t in tensors}
            assert len(shape_lens) == 1, "tensors must all have the same number of dimensions"
            shape_len = list(shape_lens)[0]
            dim = (dim + shape_len) if dim < 0 else dim
            dims = list(zip(*(list(t.shape) for t in tensors)))
            expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim]
            assert all(
                [*(len(set(t[1])) <= 2 for t in expandable_dims)]
            ), "invalid dimensions for broadcastable concatenation"
            max_dims = [(t[0], max(t[1])) for t in expandable_dims]
            expanded_dims = [(t[0], (t[1],) * num_tensors) for t in max_dims]
            expanded_dims.insert(dim, (dim, dims[dim]))
            expandable_shapes = list(zip(*(t[1] for t in expanded_dims)))
            tensors = [t[0].expand(*t[1]) for t in zip(tensors, expandable_shapes)]
            return torch.cat(tensors, dim=dim)

        freqs = broadcast((freqs_t[:, None, None, :], freqs_h[None, :, None, :], freqs_w[None, None, :, :]), dim=-1)

        t, h, w, d = freqs.shape
        freqs = freqs.view(t * h * w, d)

        # Generate sine and cosine components
        sin = freqs.sin()
        cos = freqs.cos()

        if use_real:
            return cos, sin
        else:
            freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
            return freqs_cis
    

    def prepare_rotary_positional_embeddings(
        self,
        height: int,
        width: int,
        num_frames: int,
        device: torch.device,
    ):
        grid_height = height // 2
        grid_width = width // 2
        base_size_width = 720 // (8 * 2)
        base_size_height = 480 // (8 * 2)

        grid_crops_coords = self.get_resize_crop_region_for_grid(
            (grid_height, grid_width), base_size_width, base_size_height
        )
        freqs_cos, freqs_sin = self.get_3d_rotary_pos_embed(
            embed_dim=64,
            crops_coords=grid_crops_coords,
            grid_size=(grid_height, grid_width),
            temporal_size=num_frames,
            use_real=True,
        )

        freqs_cos = freqs_cos.to(device=device)
        freqs_sin = freqs_sin.to(device=device)
        return freqs_cos, freqs_sin


    def unpatchify(self, hidden_states, height, width):
        hidden_states = rearrange(hidden_states, "B (T H W) (C P Q) -> B C T (H P) (W Q)", P=2, Q=2, H=height//2, W=width//2)
        return hidden_states
    

    def build_mask(self, T, H, W, dtype, device, is_bound):
        t = repeat(torch.arange(T), "T -> T H W", T=T, H=H, W=W)
        h = repeat(torch.arange(H), "H -> T H W", T=T, H=H, W=W)
        w = repeat(torch.arange(W), "W -> T H W", T=T, H=H, W=W)
        border_width = (H + W) // 4
        pad = torch.ones_like(h) * border_width
        mask = torch.stack([
            pad if is_bound[0] else t + 1,
            pad if is_bound[1] else T - t,
            pad if is_bound[2] else h + 1,
            pad if is_bound[3] else H - h,
            pad if is_bound[4] else w + 1,
            pad if is_bound[5] else W - w
        ]).min(dim=0).values
        mask = mask.clip(1, border_width)
        mask = (mask / border_width).to(dtype=dtype, device=device)
        mask = rearrange(mask, "T H W -> 1 1 T H W")
        return mask
    

    def tiled_forward(self, hidden_states, timestep, prompt_emb, tile_size=(60, 90), tile_stride=(30, 45)):
        B, C, T, H, W = hidden_states.shape
        value = torch.zeros((B, C, T, H, W), dtype=hidden_states.dtype, device=hidden_states.device)
        weight = torch.zeros((B, C, T, H, W), dtype=hidden_states.dtype, device=hidden_states.device)

        # Split tasks
        tasks = []
        for h in range(0, H, tile_stride):
            for w in range(0, W, tile_stride):
                if (h-tile_stride >= 0 and h-tile_stride+tile_size >= H) or (w-tile_stride >= 0 and w-tile_stride+tile_size >= W):
                    continue
                h_, w_ = h + tile_size, w + tile_size
                if h_ > H: h, h_ = max(H - tile_size, 0), H
                if w_ > W: w, w_ = max(W - tile_size, 0), W
                tasks.append((h, h_, w, w_))

        # Run
        for hl, hr, wl, wr in tasks:
            mask = self.build_mask(
                value.shape[2], (hr-hl), (wr-wl),
                hidden_states.dtype, hidden_states.device,
                is_bound=(True, True, hl==0, hr>=H, wl==0, wr>=W)
            )
            model_output = self.forward(hidden_states[:, :, :, hl:hr, wl:wr], timestep, prompt_emb)
            value[:, :, :, hl:hr, wl:wr] += model_output * mask
            weight[:, :, :, hl:hr, wl:wr] += mask
        value = value / weight

        return value


    def forward(self, hidden_states, timestep, prompt_emb, image_rotary_emb=None, tiled=False, tile_size=90, tile_stride=30, use_gradient_checkpointing=False):
        if tiled:
            return TileWorker2Dto3D().tiled_forward(
                forward_fn=lambda x: self.forward(x, timestep, prompt_emb),
                model_input=hidden_states,
                tile_size=tile_size, tile_stride=tile_stride,
                tile_device=hidden_states.device, tile_dtype=hidden_states.dtype,
                computation_device=self.context_embedder.weight.device, computation_dtype=self.context_embedder.weight.dtype
            )
        num_frames, height, width = hidden_states.shape[-3:]
        if image_rotary_emb is None:
            image_rotary_emb = self.prepare_rotary_positional_embeddings(height, width, num_frames, device=self.context_embedder.weight.device)
        hidden_states = self.patchify(hidden_states)
        time_emb = self.time_embedder(timestep, dtype=hidden_states.dtype)
        prompt_emb = self.context_embedder(prompt_emb)

        def create_custom_forward(module):
            def custom_forward(*inputs):
                return module(*inputs)
            return custom_forward
        
        for block in self.blocks:
            if self.training and use_gradient_checkpointing:
                hidden_states, prompt_emb = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states, prompt_emb, time_emb, image_rotary_emb,
                    use_reentrant=False,
                )
            else:
                hidden_states, prompt_emb = block(hidden_states, prompt_emb, time_emb, image_rotary_emb)

        hidden_states = torch.cat([prompt_emb, hidden_states], dim=1)
        hidden_states = self.norm_final(hidden_states)
        hidden_states = hidden_states[:, prompt_emb.shape[1]:]
        hidden_states = self.norm_out(hidden_states, prompt_emb, time_emb)
        hidden_states = self.proj_out(hidden_states)
        hidden_states = self.unpatchify(hidden_states, height, width)

        return hidden_states
    

    @staticmethod
    def state_dict_converter():
        return CogDiTStateDictConverter()
    

    @staticmethod
    def from_pretrained(file_path, torch_dtype=torch.bfloat16):
        model = CogDiT().to(torch_dtype)
        state_dict = load_state_dict_from_folder(file_path, torch_dtype=torch_dtype)
        state_dict = CogDiT.state_dict_converter().from_diffusers(state_dict)
        model.load_state_dict(state_dict)
        return model



class CogDiTStateDictConverter:
    def __init__(self):
        pass


    def from_diffusers(self, state_dict):
        rename_dict = {
            "patch_embed.proj.weight": "patchify.proj.weight",
            "patch_embed.proj.bias": "patchify.proj.bias",
            "patch_embed.text_proj.weight": "context_embedder.weight",
            "patch_embed.text_proj.bias": "context_embedder.bias",
            "time_embedding.linear_1.weight": "time_embedder.timestep_embedder.0.weight",
            "time_embedding.linear_1.bias": "time_embedder.timestep_embedder.0.bias",
            "time_embedding.linear_2.weight": "time_embedder.timestep_embedder.2.weight",
            "time_embedding.linear_2.bias": "time_embedder.timestep_embedder.2.bias",

            "norm_final.weight": "norm_final.weight",
            "norm_final.bias": "norm_final.bias",
            "norm_out.linear.weight": "norm_out.linear.weight",
            "norm_out.linear.bias": "norm_out.linear.bias",
            "norm_out.norm.weight": "norm_out.norm.weight",
            "norm_out.norm.bias": "norm_out.norm.bias",
            "proj_out.weight": "proj_out.weight",
            "proj_out.bias": "proj_out.bias",
        }
        suffix_dict = {
            "norm1.linear.weight": "norm1.linear.weight",
            "norm1.linear.bias": "norm1.linear.bias",
            "norm1.norm.weight": "norm1.norm.weight",
            "norm1.norm.bias": "norm1.norm.bias",
            "attn1.norm_q.weight": "norm_q.weight",
            "attn1.norm_q.bias": "norm_q.bias",
            "attn1.norm_k.weight": "norm_k.weight",
            "attn1.norm_k.bias": "norm_k.bias",
            "attn1.to_q.weight": "attn1.to_q.weight",
            "attn1.to_q.bias": "attn1.to_q.bias",
            "attn1.to_k.weight": "attn1.to_k.weight",
            "attn1.to_k.bias": "attn1.to_k.bias",
            "attn1.to_v.weight": "attn1.to_v.weight",
            "attn1.to_v.bias": "attn1.to_v.bias",
            "attn1.to_out.0.weight": "attn1.to_out.weight",
            "attn1.to_out.0.bias": "attn1.to_out.bias",
            "norm2.linear.weight": "norm2.linear.weight",
            "norm2.linear.bias": "norm2.linear.bias",
            "norm2.norm.weight": "norm2.norm.weight",
            "norm2.norm.bias": "norm2.norm.bias",
            "ff.net.0.proj.weight": "ff.0.weight",
            "ff.net.0.proj.bias": "ff.0.bias",
            "ff.net.2.weight": "ff.2.weight",
            "ff.net.2.bias": "ff.2.bias",
        }
        state_dict_ = {}
        for name, param in state_dict.items():
            if name in rename_dict:
                if name == "patch_embed.proj.weight":
                    param = param.unsqueeze(2)
                state_dict_[rename_dict[name]] = param
            else:
                names = name.split(".")
                if names[0] == "transformer_blocks":
                    suffix = ".".join(names[2:])
                    state_dict_[f"blocks.{names[1]}." + suffix_dict[suffix]] = param
        return state_dict_
    

    def from_civitai(self, state_dict):
        return self.from_diffusers(state_dict)