Spaces:
Running
on
L40S
Running
on
L40S
File size: 17,475 Bytes
4bf9661 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
import torch
from einops import rearrange, repeat
from .sd3_dit import TimestepEmbeddings
from .attention import Attention
from .utils import load_state_dict_from_folder
from .tiler import TileWorker2Dto3D
import numpy as np
class CogPatchify(torch.nn.Module):
def __init__(self, dim_in, dim_out, patch_size) -> None:
super().__init__()
self.proj = torch.nn.Conv3d(dim_in, dim_out, kernel_size=(1, patch_size, patch_size), stride=(1, patch_size, patch_size))
def forward(self, hidden_states):
hidden_states = self.proj(hidden_states)
hidden_states = rearrange(hidden_states, "B C T H W -> B (T H W) C")
return hidden_states
class CogAdaLayerNorm(torch.nn.Module):
def __init__(self, dim, dim_cond, single=False):
super().__init__()
self.single = single
self.linear = torch.nn.Linear(dim_cond, dim * (2 if single else 6))
self.norm = torch.nn.LayerNorm(dim, elementwise_affine=True, eps=1e-5)
def forward(self, hidden_states, prompt_emb, emb):
emb = self.linear(torch.nn.functional.silu(emb))
if self.single:
shift, scale = emb.unsqueeze(1).chunk(2, dim=2)
hidden_states = self.norm(hidden_states) * (1 + scale) + shift
return hidden_states
else:
shift_a, scale_a, gate_a, shift_b, scale_b, gate_b = emb.unsqueeze(1).chunk(6, dim=2)
hidden_states = self.norm(hidden_states) * (1 + scale_a) + shift_a
prompt_emb = self.norm(prompt_emb) * (1 + scale_b) + shift_b
return hidden_states, prompt_emb, gate_a, gate_b
class CogDiTBlock(torch.nn.Module):
def __init__(self, dim, dim_cond, num_heads):
super().__init__()
self.norm1 = CogAdaLayerNorm(dim, dim_cond)
self.attn1 = Attention(q_dim=dim, num_heads=48, head_dim=dim//num_heads, bias_q=True, bias_kv=True, bias_out=True)
self.norm_q = torch.nn.LayerNorm((dim//num_heads,), eps=1e-06, elementwise_affine=True)
self.norm_k = torch.nn.LayerNorm((dim//num_heads,), eps=1e-06, elementwise_affine=True)
self.norm2 = CogAdaLayerNorm(dim, dim_cond)
self.ff = torch.nn.Sequential(
torch.nn.Linear(dim, dim*4),
torch.nn.GELU(approximate="tanh"),
torch.nn.Linear(dim*4, dim)
)
def apply_rotary_emb(self, x, freqs_cis):
cos, sin = freqs_cis # [S, D]
cos = cos[None, None]
sin = sin[None, None]
cos, sin = cos.to(x.device), sin.to(x.device)
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2]
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
return out
def process_qkv(self, q, k, v, image_rotary_emb, text_seq_length):
q = self.norm_q(q)
k = self.norm_k(k)
q[:, :, text_seq_length:] = self.apply_rotary_emb(q[:, :, text_seq_length:], image_rotary_emb)
k[:, :, text_seq_length:] = self.apply_rotary_emb(k[:, :, text_seq_length:], image_rotary_emb)
return q, k, v
def forward(self, hidden_states, prompt_emb, time_emb, image_rotary_emb):
# Attention
norm_hidden_states, norm_encoder_hidden_states, gate_a, gate_b = self.norm1(
hidden_states, prompt_emb, time_emb
)
attention_io = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1)
attention_io = self.attn1(
attention_io,
qkv_preprocessor=lambda q, k, v: self.process_qkv(q, k, v, image_rotary_emb, prompt_emb.shape[1])
)
hidden_states = hidden_states + gate_a * attention_io[:, prompt_emb.shape[1]:]
prompt_emb = prompt_emb + gate_b * attention_io[:, :prompt_emb.shape[1]]
# Feed forward
norm_hidden_states, norm_encoder_hidden_states, gate_a, gate_b = self.norm2(
hidden_states, prompt_emb, time_emb
)
ff_io = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1)
ff_io = self.ff(ff_io)
hidden_states = hidden_states + gate_a * ff_io[:, prompt_emb.shape[1]:]
prompt_emb = prompt_emb + gate_b * ff_io[:, :prompt_emb.shape[1]]
return hidden_states, prompt_emb
class CogDiT(torch.nn.Module):
def __init__(self):
super().__init__()
self.patchify = CogPatchify(16, 3072, 2)
self.time_embedder = TimestepEmbeddings(3072, 512)
self.context_embedder = torch.nn.Linear(4096, 3072)
self.blocks = torch.nn.ModuleList([CogDiTBlock(3072, 512, 48) for _ in range(42)])
self.norm_final = torch.nn.LayerNorm((3072,), eps=1e-05, elementwise_affine=True)
self.norm_out = CogAdaLayerNorm(3072, 512, single=True)
self.proj_out = torch.nn.Linear(3072, 64, bias=True)
def get_resize_crop_region_for_grid(self, src, tgt_width, tgt_height):
tw = tgt_width
th = tgt_height
h, w = src
r = h / w
if r > (th / tw):
resize_height = th
resize_width = int(round(th / h * w))
else:
resize_width = tw
resize_height = int(round(tw / w * h))
crop_top = int(round((th - resize_height) / 2.0))
crop_left = int(round((tw - resize_width) / 2.0))
return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)
def get_3d_rotary_pos_embed(
self, embed_dim, crops_coords, grid_size, temporal_size, theta: int = 10000, use_real: bool = True
):
start, stop = crops_coords
grid_h = np.linspace(start[0], stop[0], grid_size[0], endpoint=False, dtype=np.float32)
grid_w = np.linspace(start[1], stop[1], grid_size[1], endpoint=False, dtype=np.float32)
grid_t = np.linspace(0, temporal_size, temporal_size, endpoint=False, dtype=np.float32)
# Compute dimensions for each axis
dim_t = embed_dim // 4
dim_h = embed_dim // 8 * 3
dim_w = embed_dim // 8 * 3
# Temporal frequencies
freqs_t = 1.0 / (theta ** (torch.arange(0, dim_t, 2).float() / dim_t))
grid_t = torch.from_numpy(grid_t).float()
freqs_t = torch.einsum("n , f -> n f", grid_t, freqs_t)
freqs_t = freqs_t.repeat_interleave(2, dim=-1)
# Spatial frequencies for height and width
freqs_h = 1.0 / (theta ** (torch.arange(0, dim_h, 2).float() / dim_h))
freqs_w = 1.0 / (theta ** (torch.arange(0, dim_w, 2).float() / dim_w))
grid_h = torch.from_numpy(grid_h).float()
grid_w = torch.from_numpy(grid_w).float()
freqs_h = torch.einsum("n , f -> n f", grid_h, freqs_h)
freqs_w = torch.einsum("n , f -> n f", grid_w, freqs_w)
freqs_h = freqs_h.repeat_interleave(2, dim=-1)
freqs_w = freqs_w.repeat_interleave(2, dim=-1)
# Broadcast and concatenate tensors along specified dimension
def broadcast(tensors, dim=-1):
num_tensors = len(tensors)
shape_lens = {len(t.shape) for t in tensors}
assert len(shape_lens) == 1, "tensors must all have the same number of dimensions"
shape_len = list(shape_lens)[0]
dim = (dim + shape_len) if dim < 0 else dim
dims = list(zip(*(list(t.shape) for t in tensors)))
expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim]
assert all(
[*(len(set(t[1])) <= 2 for t in expandable_dims)]
), "invalid dimensions for broadcastable concatenation"
max_dims = [(t[0], max(t[1])) for t in expandable_dims]
expanded_dims = [(t[0], (t[1],) * num_tensors) for t in max_dims]
expanded_dims.insert(dim, (dim, dims[dim]))
expandable_shapes = list(zip(*(t[1] for t in expanded_dims)))
tensors = [t[0].expand(*t[1]) for t in zip(tensors, expandable_shapes)]
return torch.cat(tensors, dim=dim)
freqs = broadcast((freqs_t[:, None, None, :], freqs_h[None, :, None, :], freqs_w[None, None, :, :]), dim=-1)
t, h, w, d = freqs.shape
freqs = freqs.view(t * h * w, d)
# Generate sine and cosine components
sin = freqs.sin()
cos = freqs.cos()
if use_real:
return cos, sin
else:
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
return freqs_cis
def prepare_rotary_positional_embeddings(
self,
height: int,
width: int,
num_frames: int,
device: torch.device,
):
grid_height = height // 2
grid_width = width // 2
base_size_width = 720 // (8 * 2)
base_size_height = 480 // (8 * 2)
grid_crops_coords = self.get_resize_crop_region_for_grid(
(grid_height, grid_width), base_size_width, base_size_height
)
freqs_cos, freqs_sin = self.get_3d_rotary_pos_embed(
embed_dim=64,
crops_coords=grid_crops_coords,
grid_size=(grid_height, grid_width),
temporal_size=num_frames,
use_real=True,
)
freqs_cos = freqs_cos.to(device=device)
freqs_sin = freqs_sin.to(device=device)
return freqs_cos, freqs_sin
def unpatchify(self, hidden_states, height, width):
hidden_states = rearrange(hidden_states, "B (T H W) (C P Q) -> B C T (H P) (W Q)", P=2, Q=2, H=height//2, W=width//2)
return hidden_states
def build_mask(self, T, H, W, dtype, device, is_bound):
t = repeat(torch.arange(T), "T -> T H W", T=T, H=H, W=W)
h = repeat(torch.arange(H), "H -> T H W", T=T, H=H, W=W)
w = repeat(torch.arange(W), "W -> T H W", T=T, H=H, W=W)
border_width = (H + W) // 4
pad = torch.ones_like(h) * border_width
mask = torch.stack([
pad if is_bound[0] else t + 1,
pad if is_bound[1] else T - t,
pad if is_bound[2] else h + 1,
pad if is_bound[3] else H - h,
pad if is_bound[4] else w + 1,
pad if is_bound[5] else W - w
]).min(dim=0).values
mask = mask.clip(1, border_width)
mask = (mask / border_width).to(dtype=dtype, device=device)
mask = rearrange(mask, "T H W -> 1 1 T H W")
return mask
def tiled_forward(self, hidden_states, timestep, prompt_emb, tile_size=(60, 90), tile_stride=(30, 45)):
B, C, T, H, W = hidden_states.shape
value = torch.zeros((B, C, T, H, W), dtype=hidden_states.dtype, device=hidden_states.device)
weight = torch.zeros((B, C, T, H, W), dtype=hidden_states.dtype, device=hidden_states.device)
# Split tasks
tasks = []
for h in range(0, H, tile_stride):
for w in range(0, W, tile_stride):
if (h-tile_stride >= 0 and h-tile_stride+tile_size >= H) or (w-tile_stride >= 0 and w-tile_stride+tile_size >= W):
continue
h_, w_ = h + tile_size, w + tile_size
if h_ > H: h, h_ = max(H - tile_size, 0), H
if w_ > W: w, w_ = max(W - tile_size, 0), W
tasks.append((h, h_, w, w_))
# Run
for hl, hr, wl, wr in tasks:
mask = self.build_mask(
value.shape[2], (hr-hl), (wr-wl),
hidden_states.dtype, hidden_states.device,
is_bound=(True, True, hl==0, hr>=H, wl==0, wr>=W)
)
model_output = self.forward(hidden_states[:, :, :, hl:hr, wl:wr], timestep, prompt_emb)
value[:, :, :, hl:hr, wl:wr] += model_output * mask
weight[:, :, :, hl:hr, wl:wr] += mask
value = value / weight
return value
def forward(self, hidden_states, timestep, prompt_emb, image_rotary_emb=None, tiled=False, tile_size=90, tile_stride=30, use_gradient_checkpointing=False):
if tiled:
return TileWorker2Dto3D().tiled_forward(
forward_fn=lambda x: self.forward(x, timestep, prompt_emb),
model_input=hidden_states,
tile_size=tile_size, tile_stride=tile_stride,
tile_device=hidden_states.device, tile_dtype=hidden_states.dtype,
computation_device=self.context_embedder.weight.device, computation_dtype=self.context_embedder.weight.dtype
)
num_frames, height, width = hidden_states.shape[-3:]
if image_rotary_emb is None:
image_rotary_emb = self.prepare_rotary_positional_embeddings(height, width, num_frames, device=self.context_embedder.weight.device)
hidden_states = self.patchify(hidden_states)
time_emb = self.time_embedder(timestep, dtype=hidden_states.dtype)
prompt_emb = self.context_embedder(prompt_emb)
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
for block in self.blocks:
if self.training and use_gradient_checkpointing:
hidden_states, prompt_emb = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states, prompt_emb, time_emb, image_rotary_emb,
use_reentrant=False,
)
else:
hidden_states, prompt_emb = block(hidden_states, prompt_emb, time_emb, image_rotary_emb)
hidden_states = torch.cat([prompt_emb, hidden_states], dim=1)
hidden_states = self.norm_final(hidden_states)
hidden_states = hidden_states[:, prompt_emb.shape[1]:]
hidden_states = self.norm_out(hidden_states, prompt_emb, time_emb)
hidden_states = self.proj_out(hidden_states)
hidden_states = self.unpatchify(hidden_states, height, width)
return hidden_states
@staticmethod
def state_dict_converter():
return CogDiTStateDictConverter()
@staticmethod
def from_pretrained(file_path, torch_dtype=torch.bfloat16):
model = CogDiT().to(torch_dtype)
state_dict = load_state_dict_from_folder(file_path, torch_dtype=torch_dtype)
state_dict = CogDiT.state_dict_converter().from_diffusers(state_dict)
model.load_state_dict(state_dict)
return model
class CogDiTStateDictConverter:
def __init__(self):
pass
def from_diffusers(self, state_dict):
rename_dict = {
"patch_embed.proj.weight": "patchify.proj.weight",
"patch_embed.proj.bias": "patchify.proj.bias",
"patch_embed.text_proj.weight": "context_embedder.weight",
"patch_embed.text_proj.bias": "context_embedder.bias",
"time_embedding.linear_1.weight": "time_embedder.timestep_embedder.0.weight",
"time_embedding.linear_1.bias": "time_embedder.timestep_embedder.0.bias",
"time_embedding.linear_2.weight": "time_embedder.timestep_embedder.2.weight",
"time_embedding.linear_2.bias": "time_embedder.timestep_embedder.2.bias",
"norm_final.weight": "norm_final.weight",
"norm_final.bias": "norm_final.bias",
"norm_out.linear.weight": "norm_out.linear.weight",
"norm_out.linear.bias": "norm_out.linear.bias",
"norm_out.norm.weight": "norm_out.norm.weight",
"norm_out.norm.bias": "norm_out.norm.bias",
"proj_out.weight": "proj_out.weight",
"proj_out.bias": "proj_out.bias",
}
suffix_dict = {
"norm1.linear.weight": "norm1.linear.weight",
"norm1.linear.bias": "norm1.linear.bias",
"norm1.norm.weight": "norm1.norm.weight",
"norm1.norm.bias": "norm1.norm.bias",
"attn1.norm_q.weight": "norm_q.weight",
"attn1.norm_q.bias": "norm_q.bias",
"attn1.norm_k.weight": "norm_k.weight",
"attn1.norm_k.bias": "norm_k.bias",
"attn1.to_q.weight": "attn1.to_q.weight",
"attn1.to_q.bias": "attn1.to_q.bias",
"attn1.to_k.weight": "attn1.to_k.weight",
"attn1.to_k.bias": "attn1.to_k.bias",
"attn1.to_v.weight": "attn1.to_v.weight",
"attn1.to_v.bias": "attn1.to_v.bias",
"attn1.to_out.0.weight": "attn1.to_out.weight",
"attn1.to_out.0.bias": "attn1.to_out.bias",
"norm2.linear.weight": "norm2.linear.weight",
"norm2.linear.bias": "norm2.linear.bias",
"norm2.norm.weight": "norm2.norm.weight",
"norm2.norm.bias": "norm2.norm.bias",
"ff.net.0.proj.weight": "ff.0.weight",
"ff.net.0.proj.bias": "ff.0.bias",
"ff.net.2.weight": "ff.2.weight",
"ff.net.2.bias": "ff.2.bias",
}
state_dict_ = {}
for name, param in state_dict.items():
if name in rename_dict:
if name == "patch_embed.proj.weight":
param = param.unsqueeze(2)
state_dict_[rename_dict[name]] = param
else:
names = name.split(".")
if names[0] == "transformer_blocks":
suffix = ".".join(names[2:])
state_dict_[f"blocks.{names[1]}." + suffix_dict[suffix]] = param
return state_dict_
def from_civitai(self, state_dict):
return self.from_diffusers(state_dict)
|