File size: 33,956 Bytes
4bf9661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
import torch
from .sd3_dit import TimestepEmbeddings, AdaLayerNorm, RMSNorm
from einops import rearrange
from .tiler import TileWorker
from .utils import init_weights_on_device

def interact_with_ipadapter(hidden_states, q, ip_k, ip_v, scale=1.0):
    batch_size, num_tokens = hidden_states.shape[0:2]
    ip_hidden_states = torch.nn.functional.scaled_dot_product_attention(q, ip_k, ip_v)
    ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, num_tokens, -1)
    hidden_states = hidden_states + scale * ip_hidden_states
    return hidden_states


class RoPEEmbedding(torch.nn.Module):
    def __init__(self, dim, theta, axes_dim):
        super().__init__()
        self.dim = dim
        self.theta = theta
        self.axes_dim = axes_dim


    def rope(self, pos: torch.Tensor, dim: int, theta: int) -> torch.Tensor:
        assert dim % 2 == 0, "The dimension must be even."

        scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
        omega = 1.0 / (theta**scale)

        batch_size, seq_length = pos.shape
        out = torch.einsum("...n,d->...nd", pos, omega)
        cos_out = torch.cos(out)
        sin_out = torch.sin(out)

        stacked_out = torch.stack([cos_out, -sin_out, sin_out, cos_out], dim=-1)
        out = stacked_out.view(batch_size, -1, dim // 2, 2, 2)
        return out.float()


    def forward(self, ids):
        n_axes = ids.shape[-1]
        emb = torch.cat([self.rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)], dim=-3)
        return emb.unsqueeze(1)



class FluxJointAttention(torch.nn.Module):
    def __init__(self, dim_a, dim_b, num_heads, head_dim, only_out_a=False):
        super().__init__()
        self.num_heads = num_heads
        self.head_dim = head_dim
        self.only_out_a = only_out_a

        self.a_to_qkv = torch.nn.Linear(dim_a, dim_a * 3)
        self.b_to_qkv = torch.nn.Linear(dim_b, dim_b * 3)

        self.norm_q_a = RMSNorm(head_dim, eps=1e-6)
        self.norm_k_a = RMSNorm(head_dim, eps=1e-6)
        self.norm_q_b = RMSNorm(head_dim, eps=1e-6)
        self.norm_k_b = RMSNorm(head_dim, eps=1e-6)

        self.a_to_out = torch.nn.Linear(dim_a, dim_a)
        if not only_out_a:
            self.b_to_out = torch.nn.Linear(dim_b, dim_b)


    def apply_rope(self, xq, xk, freqs_cis):
        xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
        xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
        xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
        xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
        return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)

    def forward(self, hidden_states_a, hidden_states_b, image_rotary_emb, attn_mask=None, ipadapter_kwargs_list=None):
        batch_size = hidden_states_a.shape[0]

        # Part A
        qkv_a = self.a_to_qkv(hidden_states_a)
        qkv_a = qkv_a.view(batch_size, -1, 3 * self.num_heads, self.head_dim).transpose(1, 2)
        q_a, k_a, v_a = qkv_a.chunk(3, dim=1)
        q_a, k_a = self.norm_q_a(q_a), self.norm_k_a(k_a)

        # Part B
        qkv_b = self.b_to_qkv(hidden_states_b)
        qkv_b = qkv_b.view(batch_size, -1, 3 * self.num_heads, self.head_dim).transpose(1, 2)
        q_b, k_b, v_b = qkv_b.chunk(3, dim=1)
        q_b, k_b = self.norm_q_b(q_b), self.norm_k_b(k_b)

        q = torch.concat([q_b, q_a], dim=2)
        k = torch.concat([k_b, k_a], dim=2)
        v = torch.concat([v_b, v_a], dim=2)

        q, k = self.apply_rope(q, k, image_rotary_emb)

        hidden_states = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask)
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_dim)
        hidden_states = hidden_states.to(q.dtype)
        hidden_states_b, hidden_states_a = hidden_states[:, :hidden_states_b.shape[1]], hidden_states[:, hidden_states_b.shape[1]:]
        if ipadapter_kwargs_list is not None:
            hidden_states_a = interact_with_ipadapter(hidden_states_a, q_a, **ipadapter_kwargs_list)
        hidden_states_a = self.a_to_out(hidden_states_a)
        if self.only_out_a:
            return hidden_states_a
        else:
            hidden_states_b = self.b_to_out(hidden_states_b)
            return hidden_states_a, hidden_states_b



class FluxJointTransformerBlock(torch.nn.Module):
    def __init__(self, dim, num_attention_heads):
        super().__init__()
        self.norm1_a = AdaLayerNorm(dim)
        self.norm1_b = AdaLayerNorm(dim)

        self.attn = FluxJointAttention(dim, dim, num_attention_heads, dim // num_attention_heads)

        self.norm2_a = torch.nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
        self.ff_a = torch.nn.Sequential(
            torch.nn.Linear(dim, dim*4),
            torch.nn.GELU(approximate="tanh"),
            torch.nn.Linear(dim*4, dim)
        )

        self.norm2_b = torch.nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
        self.ff_b = torch.nn.Sequential(
            torch.nn.Linear(dim, dim*4),
            torch.nn.GELU(approximate="tanh"),
            torch.nn.Linear(dim*4, dim)
        )


    def forward(self, hidden_states_a, hidden_states_b, temb, image_rotary_emb, attn_mask=None, ipadapter_kwargs_list=None):
        norm_hidden_states_a, gate_msa_a, shift_mlp_a, scale_mlp_a, gate_mlp_a = self.norm1_a(hidden_states_a, emb=temb)
        norm_hidden_states_b, gate_msa_b, shift_mlp_b, scale_mlp_b, gate_mlp_b = self.norm1_b(hidden_states_b, emb=temb)

        # Attention
        attn_output_a, attn_output_b = self.attn(norm_hidden_states_a, norm_hidden_states_b, image_rotary_emb, attn_mask, ipadapter_kwargs_list)

        # Part A
        hidden_states_a = hidden_states_a + gate_msa_a * attn_output_a
        norm_hidden_states_a = self.norm2_a(hidden_states_a) * (1 + scale_mlp_a) + shift_mlp_a
        hidden_states_a = hidden_states_a + gate_mlp_a * self.ff_a(norm_hidden_states_a)

        # Part B
        hidden_states_b = hidden_states_b + gate_msa_b * attn_output_b
        norm_hidden_states_b = self.norm2_b(hidden_states_b) * (1 + scale_mlp_b) + shift_mlp_b
        hidden_states_b = hidden_states_b + gate_mlp_b * self.ff_b(norm_hidden_states_b)

        return hidden_states_a, hidden_states_b



class FluxSingleAttention(torch.nn.Module):
    def __init__(self, dim_a, dim_b, num_heads, head_dim):
        super().__init__()
        self.num_heads = num_heads
        self.head_dim = head_dim

        self.a_to_qkv = torch.nn.Linear(dim_a, dim_a * 3)

        self.norm_q_a = RMSNorm(head_dim, eps=1e-6)
        self.norm_k_a = RMSNorm(head_dim, eps=1e-6)


    def apply_rope(self, xq, xk, freqs_cis):
        xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
        xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
        xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
        xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
        return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)


    def forward(self, hidden_states, image_rotary_emb):
        batch_size = hidden_states.shape[0]

        qkv_a = self.a_to_qkv(hidden_states)
        qkv_a = qkv_a.view(batch_size, -1, 3 * self.num_heads, self.head_dim).transpose(1, 2)
        q_a, k_a, v = qkv_a.chunk(3, dim=1)
        q_a, k_a = self.norm_q_a(q_a), self.norm_k_a(k_a)

        q, k = self.apply_rope(q_a, k_a, image_rotary_emb)

        hidden_states = torch.nn.functional.scaled_dot_product_attention(q, k, v)
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_dim)
        hidden_states = hidden_states.to(q.dtype)
        return hidden_states



class AdaLayerNormSingle(torch.nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.silu = torch.nn.SiLU()
        self.linear = torch.nn.Linear(dim, 3 * dim, bias=True)
        self.norm = torch.nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)


    def forward(self, x, emb):
        emb = self.linear(self.silu(emb))
        shift_msa, scale_msa, gate_msa = emb.chunk(3, dim=1)
        x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
        return x, gate_msa



class FluxSingleTransformerBlock(torch.nn.Module):
    def __init__(self, dim, num_attention_heads):
        super().__init__()
        self.num_heads = num_attention_heads
        self.head_dim = dim // num_attention_heads
        self.dim = dim

        self.norm = AdaLayerNormSingle(dim)
        self.to_qkv_mlp = torch.nn.Linear(dim, dim * (3 + 4))
        self.norm_q_a = RMSNorm(self.head_dim, eps=1e-6)
        self.norm_k_a = RMSNorm(self.head_dim, eps=1e-6)

        self.proj_out = torch.nn.Linear(dim * 5, dim)


    def apply_rope(self, xq, xk, freqs_cis):
        xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
        xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
        xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
        xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
        return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)


    def process_attention(self, hidden_states, image_rotary_emb, attn_mask=None, ipadapter_kwargs_list=None):
        batch_size = hidden_states.shape[0]

        qkv = hidden_states.view(batch_size, -1, 3 * self.num_heads, self.head_dim).transpose(1, 2)
        q, k, v = qkv.chunk(3, dim=1)
        q, k = self.norm_q_a(q), self.norm_k_a(k)

        q, k = self.apply_rope(q, k, image_rotary_emb)

        hidden_states = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask)
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_dim)
        hidden_states = hidden_states.to(q.dtype)
        if ipadapter_kwargs_list is not None:
            hidden_states = interact_with_ipadapter(hidden_states, q, **ipadapter_kwargs_list)
        return hidden_states


    def forward(self, hidden_states_a, hidden_states_b, temb, image_rotary_emb, attn_mask=None, ipadapter_kwargs_list=None):
        residual = hidden_states_a
        norm_hidden_states, gate = self.norm(hidden_states_a, emb=temb)
        hidden_states_a = self.to_qkv_mlp(norm_hidden_states)
        attn_output, mlp_hidden_states = hidden_states_a[:, :, :self.dim * 3], hidden_states_a[:, :, self.dim * 3:]

        attn_output = self.process_attention(attn_output, image_rotary_emb, attn_mask, ipadapter_kwargs_list)
        mlp_hidden_states = torch.nn.functional.gelu(mlp_hidden_states, approximate="tanh")

        hidden_states_a = torch.cat([attn_output, mlp_hidden_states], dim=2)
        hidden_states_a = gate.unsqueeze(1) * self.proj_out(hidden_states_a)
        hidden_states_a = residual + hidden_states_a

        return hidden_states_a, hidden_states_b



class AdaLayerNormContinuous(torch.nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.silu = torch.nn.SiLU()
        self.linear = torch.nn.Linear(dim, dim * 2, bias=True)
        self.norm = torch.nn.LayerNorm(dim, eps=1e-6, elementwise_affine=False)

    def forward(self, x, conditioning):
        emb = self.linear(self.silu(conditioning))
        scale, shift = torch.chunk(emb, 2, dim=1)
        x = self.norm(x) * (1 + scale)[:, None] + shift[:, None]
        return x



class FluxDiT(torch.nn.Module):
    def __init__(self, disable_guidance_embedder=False):
        super().__init__()
        self.pos_embedder = RoPEEmbedding(3072, 10000, [16, 56, 56])
        self.time_embedder = TimestepEmbeddings(256, 3072)
        self.guidance_embedder = None if disable_guidance_embedder else TimestepEmbeddings(256, 3072)
        self.pooled_text_embedder = torch.nn.Sequential(torch.nn.Linear(768, 3072), torch.nn.SiLU(), torch.nn.Linear(3072, 3072))
        self.context_embedder = torch.nn.Linear(4096, 3072)
        self.x_embedder = torch.nn.Linear(64, 3072)

        self.blocks = torch.nn.ModuleList([FluxJointTransformerBlock(3072, 24) for _ in range(19)])
        self.single_blocks = torch.nn.ModuleList([FluxSingleTransformerBlock(3072, 24) for _ in range(38)])

        self.final_norm_out = AdaLayerNormContinuous(3072)
        self.final_proj_out = torch.nn.Linear(3072, 64)


    def patchify(self, hidden_states):
        hidden_states = rearrange(hidden_states, "B C (H P) (W Q) -> B (H W) (C P Q)", P=2, Q=2)
        return hidden_states


    def unpatchify(self, hidden_states, height, width):
        hidden_states = rearrange(hidden_states, "B (H W) (C P Q) -> B C (H P) (W Q)", P=2, Q=2, H=height//2, W=width//2)
        return hidden_states


    def prepare_image_ids(self, latents):
        batch_size, _, height, width = latents.shape
        latent_image_ids = torch.zeros(height // 2, width // 2, 3)
        latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
        latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]

        latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape

        latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1)
        latent_image_ids = latent_image_ids.reshape(
            batch_size, latent_image_id_height * latent_image_id_width, latent_image_id_channels
        )
        latent_image_ids = latent_image_ids.to(device=latents.device, dtype=latents.dtype)

        return latent_image_ids


    def tiled_forward(
        self,
        hidden_states,
        timestep, prompt_emb, pooled_prompt_emb, guidance, text_ids,
        tile_size=128, tile_stride=64,
        **kwargs
    ):
        # Due to the global positional embedding, we cannot implement layer-wise tiled forward.
        hidden_states = TileWorker().tiled_forward(
            lambda x: self.forward(x, timestep, prompt_emb, pooled_prompt_emb, guidance, text_ids, image_ids=None),
            hidden_states,
            tile_size,
            tile_stride,
            tile_device=hidden_states.device,
            tile_dtype=hidden_states.dtype
        )
        return hidden_states


    def construct_mask(self, entity_masks, prompt_seq_len, image_seq_len):
        N = len(entity_masks)
        batch_size = entity_masks[0].shape[0]
        total_seq_len = N * prompt_seq_len + image_seq_len
        patched_masks = [self.patchify(entity_masks[i]) for i in range(N)]
        attention_mask = torch.ones((batch_size, total_seq_len, total_seq_len), dtype=torch.bool).to(device=entity_masks[0].device)

        image_start = N * prompt_seq_len
        image_end = N * prompt_seq_len + image_seq_len
        # prompt-image mask
        for i in range(N):
            prompt_start = i * prompt_seq_len
            prompt_end = (i + 1) * prompt_seq_len
            image_mask = torch.sum(patched_masks[i], dim=-1) > 0
            image_mask = image_mask.unsqueeze(1).repeat(1, prompt_seq_len, 1)
            # prompt update with image
            attention_mask[:, prompt_start:prompt_end, image_start:image_end] = image_mask
            # image update with prompt
            attention_mask[:, image_start:image_end, prompt_start:prompt_end] = image_mask.transpose(1, 2)
        # prompt-prompt mask
        for i in range(N):
            for j in range(N):
                if i != j:
                    prompt_start_i = i * prompt_seq_len
                    prompt_end_i = (i + 1) * prompt_seq_len
                    prompt_start_j = j * prompt_seq_len
                    prompt_end_j = (j + 1) * prompt_seq_len
                    attention_mask[:, prompt_start_i:prompt_end_i, prompt_start_j:prompt_end_j] = False

        attention_mask = attention_mask.float()
        attention_mask[attention_mask == 0] = float('-inf')
        attention_mask[attention_mask == 1] = 0
        return attention_mask


    def process_entity_masks(self, hidden_states, prompt_emb, entity_prompt_emb, entity_masks, text_ids, image_ids):
        repeat_dim = hidden_states.shape[1]
        max_masks = 0
        attention_mask = None
        prompt_embs = [prompt_emb]
        if entity_masks is not None:
            # entity_masks
            batch_size, max_masks = entity_masks.shape[0], entity_masks.shape[1]
            entity_masks = entity_masks.repeat(1, 1, repeat_dim, 1, 1)
            entity_masks = [entity_masks[:, i, None].squeeze(1) for i in range(max_masks)]
            # global mask
            global_mask = torch.ones_like(entity_masks[0]).to(device=hidden_states.device, dtype=hidden_states.dtype)
            entity_masks = entity_masks + [global_mask] # append global to last
            # attention mask
            attention_mask = self.construct_mask(entity_masks, prompt_emb.shape[1], hidden_states.shape[1])
            attention_mask = attention_mask.to(device=hidden_states.device, dtype=hidden_states.dtype)
            attention_mask = attention_mask.unsqueeze(1)
            # embds: n_masks * b * seq * d
            local_embs = [entity_prompt_emb[:, i, None].squeeze(1) for i in range(max_masks)]
            prompt_embs = local_embs + prompt_embs # append global to last
        prompt_embs = [self.context_embedder(prompt_emb) for prompt_emb in prompt_embs]
        prompt_emb = torch.cat(prompt_embs, dim=1)

        # positional embedding
        text_ids = torch.cat([text_ids] * (max_masks + 1), dim=1)
        image_rotary_emb = self.pos_embedder(torch.cat((text_ids, image_ids), dim=1))
        return prompt_emb, image_rotary_emb, attention_mask


    def forward(
        self,
        hidden_states,
        timestep, prompt_emb, pooled_prompt_emb, guidance, text_ids, image_ids=None,
        tiled=False, tile_size=128, tile_stride=64, entity_prompt_emb=None, entity_masks=None,
        use_gradient_checkpointing=False,
        **kwargs
    ):
        if tiled:
            return self.tiled_forward(
                hidden_states,
                timestep, prompt_emb, pooled_prompt_emb, guidance, text_ids,
                tile_size=tile_size, tile_stride=tile_stride,
                **kwargs
            )

        if image_ids is None:
            image_ids = self.prepare_image_ids(hidden_states)

        conditioning = self.time_embedder(timestep, hidden_states.dtype) + self.pooled_text_embedder(pooled_prompt_emb)
        if self.guidance_embedder is not None:
            guidance = guidance * 1000
            conditioning = conditioning + self.guidance_embedder(guidance, hidden_states.dtype)

        height, width = hidden_states.shape[-2:]
        hidden_states = self.patchify(hidden_states)
        hidden_states = self.x_embedder(hidden_states)

        if entity_prompt_emb is not None and entity_masks is not None:
            prompt_emb, image_rotary_emb, attention_mask = self.process_entity_masks(hidden_states, prompt_emb, entity_prompt_emb, entity_masks, text_ids, image_ids)
        else:
            prompt_emb = self.context_embedder(prompt_emb)
            image_rotary_emb = self.pos_embedder(torch.cat((text_ids, image_ids), dim=1))
            attention_mask = None

        def create_custom_forward(module):
            def custom_forward(*inputs):
                return module(*inputs)
            return custom_forward

        for block in self.blocks:
            if self.training and use_gradient_checkpointing:
                hidden_states, prompt_emb = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states, prompt_emb, conditioning, image_rotary_emb, attention_mask,
                    use_reentrant=False,
                )
            else:
                hidden_states, prompt_emb = block(hidden_states, prompt_emb, conditioning, image_rotary_emb, attention_mask)

        hidden_states = torch.cat([prompt_emb, hidden_states], dim=1)
        for block in self.single_blocks:
            if self.training and use_gradient_checkpointing:
                hidden_states, prompt_emb = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states, prompt_emb, conditioning, image_rotary_emb, attention_mask,
                    use_reentrant=False,
                )
            else:
                hidden_states, prompt_emb = block(hidden_states, prompt_emb, conditioning, image_rotary_emb, attention_mask)
        hidden_states = hidden_states[:, prompt_emb.shape[1]:]

        hidden_states = self.final_norm_out(hidden_states, conditioning)
        hidden_states = self.final_proj_out(hidden_states)
        hidden_states = self.unpatchify(hidden_states, height, width)

        return hidden_states


    def quantize(self):
        def cast_to(weight, dtype=None, device=None, copy=False):
            if device is None or weight.device == device:
                if not copy:
                    if dtype is None or weight.dtype == dtype:
                        return weight
                return weight.to(dtype=dtype, copy=copy)

            r = torch.empty_like(weight, dtype=dtype, device=device)
            r.copy_(weight)
            return r

        def cast_weight(s, input=None, dtype=None, device=None):
            if input is not None:
                if dtype is None:
                    dtype = input.dtype
                if device is None:
                    device = input.device
            weight = cast_to(s.weight, dtype, device)
            return weight

        def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None):
            if input is not None:
                if dtype is None:
                    dtype = input.dtype
                if bias_dtype is None:
                    bias_dtype = dtype
                if device is None:
                    device = input.device
            bias = None
            weight = cast_to(s.weight, dtype, device)
            bias = cast_to(s.bias, bias_dtype, device)
            return weight, bias

        class quantized_layer:
            class Linear(torch.nn.Linear):
                def __init__(self, *args, **kwargs):
                    super().__init__(*args, **kwargs)

                def forward(self,input,**kwargs):
                    weight,bias= cast_bias_weight(self,input)
                    return torch.nn.functional.linear(input,weight,bias)

            class RMSNorm(torch.nn.Module):
                def __init__(self, module):
                    super().__init__()
                    self.module = module

                def forward(self,hidden_states,**kwargs):
                    weight= cast_weight(self.module,hidden_states)
                    input_dtype = hidden_states.dtype
                    variance = hidden_states.to(torch.float32).square().mean(-1, keepdim=True)
                    hidden_states = hidden_states * torch.rsqrt(variance + self.module.eps)
                    hidden_states = hidden_states.to(input_dtype) * weight
                    return hidden_states

        def replace_layer(model):
            for name, module in model.named_children():
                if isinstance(module, torch.nn.Linear):
                    with init_weights_on_device():
                        new_layer = quantized_layer.Linear(module.in_features,module.out_features)
                    new_layer.weight = module.weight
                    if module.bias is not None:
                        new_layer.bias = module.bias
                    # del module
                    setattr(model, name, new_layer)
                elif isinstance(module, RMSNorm):
                    if hasattr(module,"quantized"):
                        continue
                    module.quantized= True
                    new_layer = quantized_layer.RMSNorm(module)
                    setattr(model, name, new_layer)
                else:
                    replace_layer(module)

        replace_layer(self)


    @staticmethod
    def state_dict_converter():
        return FluxDiTStateDictConverter()


class FluxDiTStateDictConverter:
    def __init__(self):
        pass

    def from_diffusers(self, state_dict):
        global_rename_dict = {
            "context_embedder": "context_embedder",
            "x_embedder": "x_embedder",
            "time_text_embed.timestep_embedder.linear_1": "time_embedder.timestep_embedder.0",
            "time_text_embed.timestep_embedder.linear_2": "time_embedder.timestep_embedder.2",
            "time_text_embed.guidance_embedder.linear_1": "guidance_embedder.timestep_embedder.0",
            "time_text_embed.guidance_embedder.linear_2": "guidance_embedder.timestep_embedder.2",
            "time_text_embed.text_embedder.linear_1": "pooled_text_embedder.0",
            "time_text_embed.text_embedder.linear_2": "pooled_text_embedder.2",
            "norm_out.linear": "final_norm_out.linear",
            "proj_out": "final_proj_out",
        }
        rename_dict = {
            "proj_out": "proj_out",
            "norm1.linear": "norm1_a.linear",
            "norm1_context.linear": "norm1_b.linear",
            "attn.to_q": "attn.a_to_q",
            "attn.to_k": "attn.a_to_k",
            "attn.to_v": "attn.a_to_v",
            "attn.to_out.0": "attn.a_to_out",
            "attn.add_q_proj": "attn.b_to_q",
            "attn.add_k_proj": "attn.b_to_k",
            "attn.add_v_proj": "attn.b_to_v",
            "attn.to_add_out": "attn.b_to_out",
            "ff.net.0.proj": "ff_a.0",
            "ff.net.2": "ff_a.2",
            "ff_context.net.0.proj": "ff_b.0",
            "ff_context.net.2": "ff_b.2",
            "attn.norm_q": "attn.norm_q_a",
            "attn.norm_k": "attn.norm_k_a",
            "attn.norm_added_q": "attn.norm_q_b",
            "attn.norm_added_k": "attn.norm_k_b",
        }
        rename_dict_single = {
            "attn.to_q": "a_to_q",
            "attn.to_k": "a_to_k",
            "attn.to_v": "a_to_v",
            "attn.norm_q": "norm_q_a",
            "attn.norm_k": "norm_k_a",
            "norm.linear": "norm.linear",
            "proj_mlp": "proj_in_besides_attn",
            "proj_out": "proj_out",
        }
        state_dict_ = {}
        for name, param in state_dict.items():
            if name.endswith(".weight") or name.endswith(".bias"):
                suffix = ".weight" if name.endswith(".weight") else ".bias"
                prefix = name[:-len(suffix)]
                if prefix in global_rename_dict:
                    state_dict_[global_rename_dict[prefix] + suffix] = param
                elif prefix.startswith("transformer_blocks."):
                    names = prefix.split(".")
                    names[0] = "blocks"
                    middle = ".".join(names[2:])
                    if middle in rename_dict:
                        name_ = ".".join(names[:2] + [rename_dict[middle]] + [suffix[1:]])
                        state_dict_[name_] = param
                elif prefix.startswith("single_transformer_blocks."):
                    names = prefix.split(".")
                    names[0] = "single_blocks"
                    middle = ".".join(names[2:])
                    if middle in rename_dict_single:
                        name_ = ".".join(names[:2] + [rename_dict_single[middle]] + [suffix[1:]])
                        state_dict_[name_] = param
                    else:
                        pass
                else:
                    pass
        for name in list(state_dict_.keys()):
            if "single_blocks." in name and ".a_to_q." in name:
                mlp = state_dict_.get(name.replace(".a_to_q.", ".proj_in_besides_attn."), None)
                if mlp is None:
                    mlp = torch.zeros(4 * state_dict_[name].shape[0],
                                      *state_dict_[name].shape[1:],
                                      dtype=state_dict_[name].dtype)
                else:
                    state_dict_.pop(name.replace(".a_to_q.", ".proj_in_besides_attn."))
                param = torch.concat([
                    state_dict_.pop(name),
                    state_dict_.pop(name.replace(".a_to_q.", ".a_to_k.")),
                    state_dict_.pop(name.replace(".a_to_q.", ".a_to_v.")),
                    mlp,
                ], dim=0)
                name_ = name.replace(".a_to_q.", ".to_qkv_mlp.")
                state_dict_[name_] = param
        for name in list(state_dict_.keys()):
            for component in ["a", "b"]:
                if f".{component}_to_q." in name:
                    name_ = name.replace(f".{component}_to_q.", f".{component}_to_qkv.")
                    param = torch.concat([
                        state_dict_[name.replace(f".{component}_to_q.", f".{component}_to_q.")],
                        state_dict_[name.replace(f".{component}_to_q.", f".{component}_to_k.")],
                        state_dict_[name.replace(f".{component}_to_q.", f".{component}_to_v.")],
                    ], dim=0)
                    state_dict_[name_] = param
                    state_dict_.pop(name.replace(f".{component}_to_q.", f".{component}_to_q."))
                    state_dict_.pop(name.replace(f".{component}_to_q.", f".{component}_to_k."))
                    state_dict_.pop(name.replace(f".{component}_to_q.", f".{component}_to_v."))
        return state_dict_

    def from_civitai(self, state_dict):
        rename_dict = {
            "time_in.in_layer.bias": "time_embedder.timestep_embedder.0.bias",
            "time_in.in_layer.weight": "time_embedder.timestep_embedder.0.weight",
            "time_in.out_layer.bias": "time_embedder.timestep_embedder.2.bias",
            "time_in.out_layer.weight": "time_embedder.timestep_embedder.2.weight",
            "txt_in.bias": "context_embedder.bias",
            "txt_in.weight": "context_embedder.weight",
            "vector_in.in_layer.bias": "pooled_text_embedder.0.bias",
            "vector_in.in_layer.weight": "pooled_text_embedder.0.weight",
            "vector_in.out_layer.bias": "pooled_text_embedder.2.bias",
            "vector_in.out_layer.weight": "pooled_text_embedder.2.weight",
            "final_layer.linear.bias": "final_proj_out.bias",
            "final_layer.linear.weight": "final_proj_out.weight",
            "guidance_in.in_layer.bias": "guidance_embedder.timestep_embedder.0.bias",
            "guidance_in.in_layer.weight": "guidance_embedder.timestep_embedder.0.weight",
            "guidance_in.out_layer.bias": "guidance_embedder.timestep_embedder.2.bias",
            "guidance_in.out_layer.weight": "guidance_embedder.timestep_embedder.2.weight",
            "img_in.bias": "x_embedder.bias",
            "img_in.weight": "x_embedder.weight",
            "final_layer.adaLN_modulation.1.weight": "final_norm_out.linear.weight",
            "final_layer.adaLN_modulation.1.bias": "final_norm_out.linear.bias",
        }
        suffix_rename_dict = {
            "img_attn.norm.key_norm.scale": "attn.norm_k_a.weight",
            "img_attn.norm.query_norm.scale": "attn.norm_q_a.weight",
            "img_attn.proj.bias": "attn.a_to_out.bias",
            "img_attn.proj.weight": "attn.a_to_out.weight",
            "img_attn.qkv.bias": "attn.a_to_qkv.bias",
            "img_attn.qkv.weight": "attn.a_to_qkv.weight",
            "img_mlp.0.bias": "ff_a.0.bias",
            "img_mlp.0.weight": "ff_a.0.weight",
            "img_mlp.2.bias": "ff_a.2.bias",
            "img_mlp.2.weight": "ff_a.2.weight",
            "img_mod.lin.bias": "norm1_a.linear.bias",
            "img_mod.lin.weight": "norm1_a.linear.weight",
            "txt_attn.norm.key_norm.scale": "attn.norm_k_b.weight",
            "txt_attn.norm.query_norm.scale": "attn.norm_q_b.weight",
            "txt_attn.proj.bias": "attn.b_to_out.bias",
            "txt_attn.proj.weight": "attn.b_to_out.weight",
            "txt_attn.qkv.bias": "attn.b_to_qkv.bias",
            "txt_attn.qkv.weight": "attn.b_to_qkv.weight",
            "txt_mlp.0.bias": "ff_b.0.bias",
            "txt_mlp.0.weight": "ff_b.0.weight",
            "txt_mlp.2.bias": "ff_b.2.bias",
            "txt_mlp.2.weight": "ff_b.2.weight",
            "txt_mod.lin.bias": "norm1_b.linear.bias",
            "txt_mod.lin.weight": "norm1_b.linear.weight",

            "linear1.bias": "to_qkv_mlp.bias",
            "linear1.weight": "to_qkv_mlp.weight",
            "linear2.bias": "proj_out.bias",
            "linear2.weight": "proj_out.weight",
            "modulation.lin.bias": "norm.linear.bias",
            "modulation.lin.weight": "norm.linear.weight",
            "norm.key_norm.scale": "norm_k_a.weight",
            "norm.query_norm.scale": "norm_q_a.weight",
        }
        state_dict_ = {}
        for name, param in state_dict.items():
            if name.startswith("model.diffusion_model."):
                name = name[len("model.diffusion_model."):]
            names = name.split(".")
            if name in rename_dict:
                rename = rename_dict[name]
                if name.startswith("final_layer.adaLN_modulation.1."):
                    param = torch.concat([param[3072:], param[:3072]], dim=0)
                state_dict_[rename] = param
            elif names[0] == "double_blocks":
                rename = f"blocks.{names[1]}." + suffix_rename_dict[".".join(names[2:])]
                state_dict_[rename] = param
            elif names[0] == "single_blocks":
                if ".".join(names[2:]) in suffix_rename_dict:
                    rename = f"single_blocks.{names[1]}." + suffix_rename_dict[".".join(names[2:])]
                    state_dict_[rename] = param
            else:
                pass
        if "guidance_embedder.timestep_embedder.0.weight" not in state_dict_:
            return state_dict_, {"disable_guidance_embedder": True}
        else:
            return state_dict_