Spaces:
Running
on
L40S
Running
on
L40S
File size: 33,956 Bytes
4bf9661 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 |
import torch
from .sd3_dit import TimestepEmbeddings, AdaLayerNorm, RMSNorm
from einops import rearrange
from .tiler import TileWorker
from .utils import init_weights_on_device
def interact_with_ipadapter(hidden_states, q, ip_k, ip_v, scale=1.0):
batch_size, num_tokens = hidden_states.shape[0:2]
ip_hidden_states = torch.nn.functional.scaled_dot_product_attention(q, ip_k, ip_v)
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, num_tokens, -1)
hidden_states = hidden_states + scale * ip_hidden_states
return hidden_states
class RoPEEmbedding(torch.nn.Module):
def __init__(self, dim, theta, axes_dim):
super().__init__()
self.dim = dim
self.theta = theta
self.axes_dim = axes_dim
def rope(self, pos: torch.Tensor, dim: int, theta: int) -> torch.Tensor:
assert dim % 2 == 0, "The dimension must be even."
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
omega = 1.0 / (theta**scale)
batch_size, seq_length = pos.shape
out = torch.einsum("...n,d->...nd", pos, omega)
cos_out = torch.cos(out)
sin_out = torch.sin(out)
stacked_out = torch.stack([cos_out, -sin_out, sin_out, cos_out], dim=-1)
out = stacked_out.view(batch_size, -1, dim // 2, 2, 2)
return out.float()
def forward(self, ids):
n_axes = ids.shape[-1]
emb = torch.cat([self.rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)], dim=-3)
return emb.unsqueeze(1)
class FluxJointAttention(torch.nn.Module):
def __init__(self, dim_a, dim_b, num_heads, head_dim, only_out_a=False):
super().__init__()
self.num_heads = num_heads
self.head_dim = head_dim
self.only_out_a = only_out_a
self.a_to_qkv = torch.nn.Linear(dim_a, dim_a * 3)
self.b_to_qkv = torch.nn.Linear(dim_b, dim_b * 3)
self.norm_q_a = RMSNorm(head_dim, eps=1e-6)
self.norm_k_a = RMSNorm(head_dim, eps=1e-6)
self.norm_q_b = RMSNorm(head_dim, eps=1e-6)
self.norm_k_b = RMSNorm(head_dim, eps=1e-6)
self.a_to_out = torch.nn.Linear(dim_a, dim_a)
if not only_out_a:
self.b_to_out = torch.nn.Linear(dim_b, dim_b)
def apply_rope(self, xq, xk, freqs_cis):
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
def forward(self, hidden_states_a, hidden_states_b, image_rotary_emb, attn_mask=None, ipadapter_kwargs_list=None):
batch_size = hidden_states_a.shape[0]
# Part A
qkv_a = self.a_to_qkv(hidden_states_a)
qkv_a = qkv_a.view(batch_size, -1, 3 * self.num_heads, self.head_dim).transpose(1, 2)
q_a, k_a, v_a = qkv_a.chunk(3, dim=1)
q_a, k_a = self.norm_q_a(q_a), self.norm_k_a(k_a)
# Part B
qkv_b = self.b_to_qkv(hidden_states_b)
qkv_b = qkv_b.view(batch_size, -1, 3 * self.num_heads, self.head_dim).transpose(1, 2)
q_b, k_b, v_b = qkv_b.chunk(3, dim=1)
q_b, k_b = self.norm_q_b(q_b), self.norm_k_b(k_b)
q = torch.concat([q_b, q_a], dim=2)
k = torch.concat([k_b, k_a], dim=2)
v = torch.concat([v_b, v_a], dim=2)
q, k = self.apply_rope(q, k, image_rotary_emb)
hidden_states = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_dim)
hidden_states = hidden_states.to(q.dtype)
hidden_states_b, hidden_states_a = hidden_states[:, :hidden_states_b.shape[1]], hidden_states[:, hidden_states_b.shape[1]:]
if ipadapter_kwargs_list is not None:
hidden_states_a = interact_with_ipadapter(hidden_states_a, q_a, **ipadapter_kwargs_list)
hidden_states_a = self.a_to_out(hidden_states_a)
if self.only_out_a:
return hidden_states_a
else:
hidden_states_b = self.b_to_out(hidden_states_b)
return hidden_states_a, hidden_states_b
class FluxJointTransformerBlock(torch.nn.Module):
def __init__(self, dim, num_attention_heads):
super().__init__()
self.norm1_a = AdaLayerNorm(dim)
self.norm1_b = AdaLayerNorm(dim)
self.attn = FluxJointAttention(dim, dim, num_attention_heads, dim // num_attention_heads)
self.norm2_a = torch.nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
self.ff_a = torch.nn.Sequential(
torch.nn.Linear(dim, dim*4),
torch.nn.GELU(approximate="tanh"),
torch.nn.Linear(dim*4, dim)
)
self.norm2_b = torch.nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
self.ff_b = torch.nn.Sequential(
torch.nn.Linear(dim, dim*4),
torch.nn.GELU(approximate="tanh"),
torch.nn.Linear(dim*4, dim)
)
def forward(self, hidden_states_a, hidden_states_b, temb, image_rotary_emb, attn_mask=None, ipadapter_kwargs_list=None):
norm_hidden_states_a, gate_msa_a, shift_mlp_a, scale_mlp_a, gate_mlp_a = self.norm1_a(hidden_states_a, emb=temb)
norm_hidden_states_b, gate_msa_b, shift_mlp_b, scale_mlp_b, gate_mlp_b = self.norm1_b(hidden_states_b, emb=temb)
# Attention
attn_output_a, attn_output_b = self.attn(norm_hidden_states_a, norm_hidden_states_b, image_rotary_emb, attn_mask, ipadapter_kwargs_list)
# Part A
hidden_states_a = hidden_states_a + gate_msa_a * attn_output_a
norm_hidden_states_a = self.norm2_a(hidden_states_a) * (1 + scale_mlp_a) + shift_mlp_a
hidden_states_a = hidden_states_a + gate_mlp_a * self.ff_a(norm_hidden_states_a)
# Part B
hidden_states_b = hidden_states_b + gate_msa_b * attn_output_b
norm_hidden_states_b = self.norm2_b(hidden_states_b) * (1 + scale_mlp_b) + shift_mlp_b
hidden_states_b = hidden_states_b + gate_mlp_b * self.ff_b(norm_hidden_states_b)
return hidden_states_a, hidden_states_b
class FluxSingleAttention(torch.nn.Module):
def __init__(self, dim_a, dim_b, num_heads, head_dim):
super().__init__()
self.num_heads = num_heads
self.head_dim = head_dim
self.a_to_qkv = torch.nn.Linear(dim_a, dim_a * 3)
self.norm_q_a = RMSNorm(head_dim, eps=1e-6)
self.norm_k_a = RMSNorm(head_dim, eps=1e-6)
def apply_rope(self, xq, xk, freqs_cis):
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
def forward(self, hidden_states, image_rotary_emb):
batch_size = hidden_states.shape[0]
qkv_a = self.a_to_qkv(hidden_states)
qkv_a = qkv_a.view(batch_size, -1, 3 * self.num_heads, self.head_dim).transpose(1, 2)
q_a, k_a, v = qkv_a.chunk(3, dim=1)
q_a, k_a = self.norm_q_a(q_a), self.norm_k_a(k_a)
q, k = self.apply_rope(q_a, k_a, image_rotary_emb)
hidden_states = torch.nn.functional.scaled_dot_product_attention(q, k, v)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_dim)
hidden_states = hidden_states.to(q.dtype)
return hidden_states
class AdaLayerNormSingle(torch.nn.Module):
def __init__(self, dim):
super().__init__()
self.silu = torch.nn.SiLU()
self.linear = torch.nn.Linear(dim, 3 * dim, bias=True)
self.norm = torch.nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
def forward(self, x, emb):
emb = self.linear(self.silu(emb))
shift_msa, scale_msa, gate_msa = emb.chunk(3, dim=1)
x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
return x, gate_msa
class FluxSingleTransformerBlock(torch.nn.Module):
def __init__(self, dim, num_attention_heads):
super().__init__()
self.num_heads = num_attention_heads
self.head_dim = dim // num_attention_heads
self.dim = dim
self.norm = AdaLayerNormSingle(dim)
self.to_qkv_mlp = torch.nn.Linear(dim, dim * (3 + 4))
self.norm_q_a = RMSNorm(self.head_dim, eps=1e-6)
self.norm_k_a = RMSNorm(self.head_dim, eps=1e-6)
self.proj_out = torch.nn.Linear(dim * 5, dim)
def apply_rope(self, xq, xk, freqs_cis):
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
def process_attention(self, hidden_states, image_rotary_emb, attn_mask=None, ipadapter_kwargs_list=None):
batch_size = hidden_states.shape[0]
qkv = hidden_states.view(batch_size, -1, 3 * self.num_heads, self.head_dim).transpose(1, 2)
q, k, v = qkv.chunk(3, dim=1)
q, k = self.norm_q_a(q), self.norm_k_a(k)
q, k = self.apply_rope(q, k, image_rotary_emb)
hidden_states = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_dim)
hidden_states = hidden_states.to(q.dtype)
if ipadapter_kwargs_list is not None:
hidden_states = interact_with_ipadapter(hidden_states, q, **ipadapter_kwargs_list)
return hidden_states
def forward(self, hidden_states_a, hidden_states_b, temb, image_rotary_emb, attn_mask=None, ipadapter_kwargs_list=None):
residual = hidden_states_a
norm_hidden_states, gate = self.norm(hidden_states_a, emb=temb)
hidden_states_a = self.to_qkv_mlp(norm_hidden_states)
attn_output, mlp_hidden_states = hidden_states_a[:, :, :self.dim * 3], hidden_states_a[:, :, self.dim * 3:]
attn_output = self.process_attention(attn_output, image_rotary_emb, attn_mask, ipadapter_kwargs_list)
mlp_hidden_states = torch.nn.functional.gelu(mlp_hidden_states, approximate="tanh")
hidden_states_a = torch.cat([attn_output, mlp_hidden_states], dim=2)
hidden_states_a = gate.unsqueeze(1) * self.proj_out(hidden_states_a)
hidden_states_a = residual + hidden_states_a
return hidden_states_a, hidden_states_b
class AdaLayerNormContinuous(torch.nn.Module):
def __init__(self, dim):
super().__init__()
self.silu = torch.nn.SiLU()
self.linear = torch.nn.Linear(dim, dim * 2, bias=True)
self.norm = torch.nn.LayerNorm(dim, eps=1e-6, elementwise_affine=False)
def forward(self, x, conditioning):
emb = self.linear(self.silu(conditioning))
scale, shift = torch.chunk(emb, 2, dim=1)
x = self.norm(x) * (1 + scale)[:, None] + shift[:, None]
return x
class FluxDiT(torch.nn.Module):
def __init__(self, disable_guidance_embedder=False):
super().__init__()
self.pos_embedder = RoPEEmbedding(3072, 10000, [16, 56, 56])
self.time_embedder = TimestepEmbeddings(256, 3072)
self.guidance_embedder = None if disable_guidance_embedder else TimestepEmbeddings(256, 3072)
self.pooled_text_embedder = torch.nn.Sequential(torch.nn.Linear(768, 3072), torch.nn.SiLU(), torch.nn.Linear(3072, 3072))
self.context_embedder = torch.nn.Linear(4096, 3072)
self.x_embedder = torch.nn.Linear(64, 3072)
self.blocks = torch.nn.ModuleList([FluxJointTransformerBlock(3072, 24) for _ in range(19)])
self.single_blocks = torch.nn.ModuleList([FluxSingleTransformerBlock(3072, 24) for _ in range(38)])
self.final_norm_out = AdaLayerNormContinuous(3072)
self.final_proj_out = torch.nn.Linear(3072, 64)
def patchify(self, hidden_states):
hidden_states = rearrange(hidden_states, "B C (H P) (W Q) -> B (H W) (C P Q)", P=2, Q=2)
return hidden_states
def unpatchify(self, hidden_states, height, width):
hidden_states = rearrange(hidden_states, "B (H W) (C P Q) -> B C (H P) (W Q)", P=2, Q=2, H=height//2, W=width//2)
return hidden_states
def prepare_image_ids(self, latents):
batch_size, _, height, width = latents.shape
latent_image_ids = torch.zeros(height // 2, width // 2, 3)
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1)
latent_image_ids = latent_image_ids.reshape(
batch_size, latent_image_id_height * latent_image_id_width, latent_image_id_channels
)
latent_image_ids = latent_image_ids.to(device=latents.device, dtype=latents.dtype)
return latent_image_ids
def tiled_forward(
self,
hidden_states,
timestep, prompt_emb, pooled_prompt_emb, guidance, text_ids,
tile_size=128, tile_stride=64,
**kwargs
):
# Due to the global positional embedding, we cannot implement layer-wise tiled forward.
hidden_states = TileWorker().tiled_forward(
lambda x: self.forward(x, timestep, prompt_emb, pooled_prompt_emb, guidance, text_ids, image_ids=None),
hidden_states,
tile_size,
tile_stride,
tile_device=hidden_states.device,
tile_dtype=hidden_states.dtype
)
return hidden_states
def construct_mask(self, entity_masks, prompt_seq_len, image_seq_len):
N = len(entity_masks)
batch_size = entity_masks[0].shape[0]
total_seq_len = N * prompt_seq_len + image_seq_len
patched_masks = [self.patchify(entity_masks[i]) for i in range(N)]
attention_mask = torch.ones((batch_size, total_seq_len, total_seq_len), dtype=torch.bool).to(device=entity_masks[0].device)
image_start = N * prompt_seq_len
image_end = N * prompt_seq_len + image_seq_len
# prompt-image mask
for i in range(N):
prompt_start = i * prompt_seq_len
prompt_end = (i + 1) * prompt_seq_len
image_mask = torch.sum(patched_masks[i], dim=-1) > 0
image_mask = image_mask.unsqueeze(1).repeat(1, prompt_seq_len, 1)
# prompt update with image
attention_mask[:, prompt_start:prompt_end, image_start:image_end] = image_mask
# image update with prompt
attention_mask[:, image_start:image_end, prompt_start:prompt_end] = image_mask.transpose(1, 2)
# prompt-prompt mask
for i in range(N):
for j in range(N):
if i != j:
prompt_start_i = i * prompt_seq_len
prompt_end_i = (i + 1) * prompt_seq_len
prompt_start_j = j * prompt_seq_len
prompt_end_j = (j + 1) * prompt_seq_len
attention_mask[:, prompt_start_i:prompt_end_i, prompt_start_j:prompt_end_j] = False
attention_mask = attention_mask.float()
attention_mask[attention_mask == 0] = float('-inf')
attention_mask[attention_mask == 1] = 0
return attention_mask
def process_entity_masks(self, hidden_states, prompt_emb, entity_prompt_emb, entity_masks, text_ids, image_ids):
repeat_dim = hidden_states.shape[1]
max_masks = 0
attention_mask = None
prompt_embs = [prompt_emb]
if entity_masks is not None:
# entity_masks
batch_size, max_masks = entity_masks.shape[0], entity_masks.shape[1]
entity_masks = entity_masks.repeat(1, 1, repeat_dim, 1, 1)
entity_masks = [entity_masks[:, i, None].squeeze(1) for i in range(max_masks)]
# global mask
global_mask = torch.ones_like(entity_masks[0]).to(device=hidden_states.device, dtype=hidden_states.dtype)
entity_masks = entity_masks + [global_mask] # append global to last
# attention mask
attention_mask = self.construct_mask(entity_masks, prompt_emb.shape[1], hidden_states.shape[1])
attention_mask = attention_mask.to(device=hidden_states.device, dtype=hidden_states.dtype)
attention_mask = attention_mask.unsqueeze(1)
# embds: n_masks * b * seq * d
local_embs = [entity_prompt_emb[:, i, None].squeeze(1) for i in range(max_masks)]
prompt_embs = local_embs + prompt_embs # append global to last
prompt_embs = [self.context_embedder(prompt_emb) for prompt_emb in prompt_embs]
prompt_emb = torch.cat(prompt_embs, dim=1)
# positional embedding
text_ids = torch.cat([text_ids] * (max_masks + 1), dim=1)
image_rotary_emb = self.pos_embedder(torch.cat((text_ids, image_ids), dim=1))
return prompt_emb, image_rotary_emb, attention_mask
def forward(
self,
hidden_states,
timestep, prompt_emb, pooled_prompt_emb, guidance, text_ids, image_ids=None,
tiled=False, tile_size=128, tile_stride=64, entity_prompt_emb=None, entity_masks=None,
use_gradient_checkpointing=False,
**kwargs
):
if tiled:
return self.tiled_forward(
hidden_states,
timestep, prompt_emb, pooled_prompt_emb, guidance, text_ids,
tile_size=tile_size, tile_stride=tile_stride,
**kwargs
)
if image_ids is None:
image_ids = self.prepare_image_ids(hidden_states)
conditioning = self.time_embedder(timestep, hidden_states.dtype) + self.pooled_text_embedder(pooled_prompt_emb)
if self.guidance_embedder is not None:
guidance = guidance * 1000
conditioning = conditioning + self.guidance_embedder(guidance, hidden_states.dtype)
height, width = hidden_states.shape[-2:]
hidden_states = self.patchify(hidden_states)
hidden_states = self.x_embedder(hidden_states)
if entity_prompt_emb is not None and entity_masks is not None:
prompt_emb, image_rotary_emb, attention_mask = self.process_entity_masks(hidden_states, prompt_emb, entity_prompt_emb, entity_masks, text_ids, image_ids)
else:
prompt_emb = self.context_embedder(prompt_emb)
image_rotary_emb = self.pos_embedder(torch.cat((text_ids, image_ids), dim=1))
attention_mask = None
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
for block in self.blocks:
if self.training and use_gradient_checkpointing:
hidden_states, prompt_emb = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states, prompt_emb, conditioning, image_rotary_emb, attention_mask,
use_reentrant=False,
)
else:
hidden_states, prompt_emb = block(hidden_states, prompt_emb, conditioning, image_rotary_emb, attention_mask)
hidden_states = torch.cat([prompt_emb, hidden_states], dim=1)
for block in self.single_blocks:
if self.training and use_gradient_checkpointing:
hidden_states, prompt_emb = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states, prompt_emb, conditioning, image_rotary_emb, attention_mask,
use_reentrant=False,
)
else:
hidden_states, prompt_emb = block(hidden_states, prompt_emb, conditioning, image_rotary_emb, attention_mask)
hidden_states = hidden_states[:, prompt_emb.shape[1]:]
hidden_states = self.final_norm_out(hidden_states, conditioning)
hidden_states = self.final_proj_out(hidden_states)
hidden_states = self.unpatchify(hidden_states, height, width)
return hidden_states
def quantize(self):
def cast_to(weight, dtype=None, device=None, copy=False):
if device is None or weight.device == device:
if not copy:
if dtype is None or weight.dtype == dtype:
return weight
return weight.to(dtype=dtype, copy=copy)
r = torch.empty_like(weight, dtype=dtype, device=device)
r.copy_(weight)
return r
def cast_weight(s, input=None, dtype=None, device=None):
if input is not None:
if dtype is None:
dtype = input.dtype
if device is None:
device = input.device
weight = cast_to(s.weight, dtype, device)
return weight
def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None):
if input is not None:
if dtype is None:
dtype = input.dtype
if bias_dtype is None:
bias_dtype = dtype
if device is None:
device = input.device
bias = None
weight = cast_to(s.weight, dtype, device)
bias = cast_to(s.bias, bias_dtype, device)
return weight, bias
class quantized_layer:
class Linear(torch.nn.Linear):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def forward(self,input,**kwargs):
weight,bias= cast_bias_weight(self,input)
return torch.nn.functional.linear(input,weight,bias)
class RMSNorm(torch.nn.Module):
def __init__(self, module):
super().__init__()
self.module = module
def forward(self,hidden_states,**kwargs):
weight= cast_weight(self.module,hidden_states)
input_dtype = hidden_states.dtype
variance = hidden_states.to(torch.float32).square().mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.module.eps)
hidden_states = hidden_states.to(input_dtype) * weight
return hidden_states
def replace_layer(model):
for name, module in model.named_children():
if isinstance(module, torch.nn.Linear):
with init_weights_on_device():
new_layer = quantized_layer.Linear(module.in_features,module.out_features)
new_layer.weight = module.weight
if module.bias is not None:
new_layer.bias = module.bias
# del module
setattr(model, name, new_layer)
elif isinstance(module, RMSNorm):
if hasattr(module,"quantized"):
continue
module.quantized= True
new_layer = quantized_layer.RMSNorm(module)
setattr(model, name, new_layer)
else:
replace_layer(module)
replace_layer(self)
@staticmethod
def state_dict_converter():
return FluxDiTStateDictConverter()
class FluxDiTStateDictConverter:
def __init__(self):
pass
def from_diffusers(self, state_dict):
global_rename_dict = {
"context_embedder": "context_embedder",
"x_embedder": "x_embedder",
"time_text_embed.timestep_embedder.linear_1": "time_embedder.timestep_embedder.0",
"time_text_embed.timestep_embedder.linear_2": "time_embedder.timestep_embedder.2",
"time_text_embed.guidance_embedder.linear_1": "guidance_embedder.timestep_embedder.0",
"time_text_embed.guidance_embedder.linear_2": "guidance_embedder.timestep_embedder.2",
"time_text_embed.text_embedder.linear_1": "pooled_text_embedder.0",
"time_text_embed.text_embedder.linear_2": "pooled_text_embedder.2",
"norm_out.linear": "final_norm_out.linear",
"proj_out": "final_proj_out",
}
rename_dict = {
"proj_out": "proj_out",
"norm1.linear": "norm1_a.linear",
"norm1_context.linear": "norm1_b.linear",
"attn.to_q": "attn.a_to_q",
"attn.to_k": "attn.a_to_k",
"attn.to_v": "attn.a_to_v",
"attn.to_out.0": "attn.a_to_out",
"attn.add_q_proj": "attn.b_to_q",
"attn.add_k_proj": "attn.b_to_k",
"attn.add_v_proj": "attn.b_to_v",
"attn.to_add_out": "attn.b_to_out",
"ff.net.0.proj": "ff_a.0",
"ff.net.2": "ff_a.2",
"ff_context.net.0.proj": "ff_b.0",
"ff_context.net.2": "ff_b.2",
"attn.norm_q": "attn.norm_q_a",
"attn.norm_k": "attn.norm_k_a",
"attn.norm_added_q": "attn.norm_q_b",
"attn.norm_added_k": "attn.norm_k_b",
}
rename_dict_single = {
"attn.to_q": "a_to_q",
"attn.to_k": "a_to_k",
"attn.to_v": "a_to_v",
"attn.norm_q": "norm_q_a",
"attn.norm_k": "norm_k_a",
"norm.linear": "norm.linear",
"proj_mlp": "proj_in_besides_attn",
"proj_out": "proj_out",
}
state_dict_ = {}
for name, param in state_dict.items():
if name.endswith(".weight") or name.endswith(".bias"):
suffix = ".weight" if name.endswith(".weight") else ".bias"
prefix = name[:-len(suffix)]
if prefix in global_rename_dict:
state_dict_[global_rename_dict[prefix] + suffix] = param
elif prefix.startswith("transformer_blocks."):
names = prefix.split(".")
names[0] = "blocks"
middle = ".".join(names[2:])
if middle in rename_dict:
name_ = ".".join(names[:2] + [rename_dict[middle]] + [suffix[1:]])
state_dict_[name_] = param
elif prefix.startswith("single_transformer_blocks."):
names = prefix.split(".")
names[0] = "single_blocks"
middle = ".".join(names[2:])
if middle in rename_dict_single:
name_ = ".".join(names[:2] + [rename_dict_single[middle]] + [suffix[1:]])
state_dict_[name_] = param
else:
pass
else:
pass
for name in list(state_dict_.keys()):
if "single_blocks." in name and ".a_to_q." in name:
mlp = state_dict_.get(name.replace(".a_to_q.", ".proj_in_besides_attn."), None)
if mlp is None:
mlp = torch.zeros(4 * state_dict_[name].shape[0],
*state_dict_[name].shape[1:],
dtype=state_dict_[name].dtype)
else:
state_dict_.pop(name.replace(".a_to_q.", ".proj_in_besides_attn."))
param = torch.concat([
state_dict_.pop(name),
state_dict_.pop(name.replace(".a_to_q.", ".a_to_k.")),
state_dict_.pop(name.replace(".a_to_q.", ".a_to_v.")),
mlp,
], dim=0)
name_ = name.replace(".a_to_q.", ".to_qkv_mlp.")
state_dict_[name_] = param
for name in list(state_dict_.keys()):
for component in ["a", "b"]:
if f".{component}_to_q." in name:
name_ = name.replace(f".{component}_to_q.", f".{component}_to_qkv.")
param = torch.concat([
state_dict_[name.replace(f".{component}_to_q.", f".{component}_to_q.")],
state_dict_[name.replace(f".{component}_to_q.", f".{component}_to_k.")],
state_dict_[name.replace(f".{component}_to_q.", f".{component}_to_v.")],
], dim=0)
state_dict_[name_] = param
state_dict_.pop(name.replace(f".{component}_to_q.", f".{component}_to_q."))
state_dict_.pop(name.replace(f".{component}_to_q.", f".{component}_to_k."))
state_dict_.pop(name.replace(f".{component}_to_q.", f".{component}_to_v."))
return state_dict_
def from_civitai(self, state_dict):
rename_dict = {
"time_in.in_layer.bias": "time_embedder.timestep_embedder.0.bias",
"time_in.in_layer.weight": "time_embedder.timestep_embedder.0.weight",
"time_in.out_layer.bias": "time_embedder.timestep_embedder.2.bias",
"time_in.out_layer.weight": "time_embedder.timestep_embedder.2.weight",
"txt_in.bias": "context_embedder.bias",
"txt_in.weight": "context_embedder.weight",
"vector_in.in_layer.bias": "pooled_text_embedder.0.bias",
"vector_in.in_layer.weight": "pooled_text_embedder.0.weight",
"vector_in.out_layer.bias": "pooled_text_embedder.2.bias",
"vector_in.out_layer.weight": "pooled_text_embedder.2.weight",
"final_layer.linear.bias": "final_proj_out.bias",
"final_layer.linear.weight": "final_proj_out.weight",
"guidance_in.in_layer.bias": "guidance_embedder.timestep_embedder.0.bias",
"guidance_in.in_layer.weight": "guidance_embedder.timestep_embedder.0.weight",
"guidance_in.out_layer.bias": "guidance_embedder.timestep_embedder.2.bias",
"guidance_in.out_layer.weight": "guidance_embedder.timestep_embedder.2.weight",
"img_in.bias": "x_embedder.bias",
"img_in.weight": "x_embedder.weight",
"final_layer.adaLN_modulation.1.weight": "final_norm_out.linear.weight",
"final_layer.adaLN_modulation.1.bias": "final_norm_out.linear.bias",
}
suffix_rename_dict = {
"img_attn.norm.key_norm.scale": "attn.norm_k_a.weight",
"img_attn.norm.query_norm.scale": "attn.norm_q_a.weight",
"img_attn.proj.bias": "attn.a_to_out.bias",
"img_attn.proj.weight": "attn.a_to_out.weight",
"img_attn.qkv.bias": "attn.a_to_qkv.bias",
"img_attn.qkv.weight": "attn.a_to_qkv.weight",
"img_mlp.0.bias": "ff_a.0.bias",
"img_mlp.0.weight": "ff_a.0.weight",
"img_mlp.2.bias": "ff_a.2.bias",
"img_mlp.2.weight": "ff_a.2.weight",
"img_mod.lin.bias": "norm1_a.linear.bias",
"img_mod.lin.weight": "norm1_a.linear.weight",
"txt_attn.norm.key_norm.scale": "attn.norm_k_b.weight",
"txt_attn.norm.query_norm.scale": "attn.norm_q_b.weight",
"txt_attn.proj.bias": "attn.b_to_out.bias",
"txt_attn.proj.weight": "attn.b_to_out.weight",
"txt_attn.qkv.bias": "attn.b_to_qkv.bias",
"txt_attn.qkv.weight": "attn.b_to_qkv.weight",
"txt_mlp.0.bias": "ff_b.0.bias",
"txt_mlp.0.weight": "ff_b.0.weight",
"txt_mlp.2.bias": "ff_b.2.bias",
"txt_mlp.2.weight": "ff_b.2.weight",
"txt_mod.lin.bias": "norm1_b.linear.bias",
"txt_mod.lin.weight": "norm1_b.linear.weight",
"linear1.bias": "to_qkv_mlp.bias",
"linear1.weight": "to_qkv_mlp.weight",
"linear2.bias": "proj_out.bias",
"linear2.weight": "proj_out.weight",
"modulation.lin.bias": "norm.linear.bias",
"modulation.lin.weight": "norm.linear.weight",
"norm.key_norm.scale": "norm_k_a.weight",
"norm.query_norm.scale": "norm_q_a.weight",
}
state_dict_ = {}
for name, param in state_dict.items():
if name.startswith("model.diffusion_model."):
name = name[len("model.diffusion_model."):]
names = name.split(".")
if name in rename_dict:
rename = rename_dict[name]
if name.startswith("final_layer.adaLN_modulation.1."):
param = torch.concat([param[3072:], param[:3072]], dim=0)
state_dict_[rename] = param
elif names[0] == "double_blocks":
rename = f"blocks.{names[1]}." + suffix_rename_dict[".".join(names[2:])]
state_dict_[rename] = param
elif names[0] == "single_blocks":
if ".".join(names[2:]) in suffix_rename_dict:
rename = f"single_blocks.{names[1]}." + suffix_rename_dict[".".join(names[2:])]
state_dict_[rename] = param
else:
pass
if "guidance_embedder.timestep_embedder.0.weight" not in state_dict_:
return state_dict_, {"disable_guidance_embedder": True}
else:
return state_dict_
|