Spaces:
Running
on
L40S
Running
on
L40S
File size: 42,030 Bytes
4bf9661 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 |
import torch
from .sd3_dit import TimestepEmbeddings, RMSNorm
from .utils import init_weights_on_device
from einops import rearrange, repeat
from tqdm import tqdm
from typing import Union, Tuple, List
from .utils import hash_state_dict_keys
def HunyuanVideoRope(latents):
def _to_tuple(x, dim=2):
if isinstance(x, int):
return (x,) * dim
elif len(x) == dim:
return x
else:
raise ValueError(f"Expected length {dim} or int, but got {x}")
def get_meshgrid_nd(start, *args, dim=2):
"""
Get n-D meshgrid with start, stop and num.
Args:
start (int or tuple): If len(args) == 0, start is num; If len(args) == 1, start is start, args[0] is stop,
step is 1; If len(args) == 2, start is start, args[0] is stop, args[1] is num. For n-dim, start/stop/num
should be int or n-tuple. If n-tuple is provided, the meshgrid will be stacked following the dim order in
n-tuples.
*args: See above.
dim (int): Dimension of the meshgrid. Defaults to 2.
Returns:
grid (np.ndarray): [dim, ...]
"""
if len(args) == 0:
# start is grid_size
num = _to_tuple(start, dim=dim)
start = (0,) * dim
stop = num
elif len(args) == 1:
# start is start, args[0] is stop, step is 1
start = _to_tuple(start, dim=dim)
stop = _to_tuple(args[0], dim=dim)
num = [stop[i] - start[i] for i in range(dim)]
elif len(args) == 2:
# start is start, args[0] is stop, args[1] is num
start = _to_tuple(start, dim=dim) # Left-Top eg: 12,0
stop = _to_tuple(args[0], dim=dim) # Right-Bottom eg: 20,32
num = _to_tuple(args[1], dim=dim) # Target Size eg: 32,124
else:
raise ValueError(f"len(args) should be 0, 1 or 2, but got {len(args)}")
# PyTorch implement of np.linspace(start[i], stop[i], num[i], endpoint=False)
axis_grid = []
for i in range(dim):
a, b, n = start[i], stop[i], num[i]
g = torch.linspace(a, b, n + 1, dtype=torch.float32)[:n]
axis_grid.append(g)
grid = torch.meshgrid(*axis_grid, indexing="ij") # dim x [W, H, D]
grid = torch.stack(grid, dim=0) # [dim, W, H, D]
return grid
def get_1d_rotary_pos_embed(
dim: int,
pos: Union[torch.FloatTensor, int],
theta: float = 10000.0,
use_real: bool = False,
theta_rescale_factor: float = 1.0,
interpolation_factor: float = 1.0,
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
"""
Precompute the frequency tensor for complex exponential (cis) with given dimensions.
(Note: `cis` means `cos + i * sin`, where i is the imaginary unit.)
This function calculates a frequency tensor with complex exponential using the given dimension 'dim'
and the end index 'end'. The 'theta' parameter scales the frequencies.
The returned tensor contains complex values in complex64 data type.
Args:
dim (int): Dimension of the frequency tensor.
pos (int or torch.FloatTensor): Position indices for the frequency tensor. [S] or scalar
theta (float, optional): Scaling factor for frequency computation. Defaults to 10000.0.
use_real (bool, optional): If True, return real part and imaginary part separately.
Otherwise, return complex numbers.
theta_rescale_factor (float, optional): Rescale factor for theta. Defaults to 1.0.
Returns:
freqs_cis: Precomputed frequency tensor with complex exponential. [S, D/2]
freqs_cos, freqs_sin: Precomputed frequency tensor with real and imaginary parts separately. [S, D]
"""
if isinstance(pos, int):
pos = torch.arange(pos).float()
# proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
# has some connection to NTK literature
if theta_rescale_factor != 1.0:
theta *= theta_rescale_factor ** (dim / (dim - 2))
freqs = 1.0 / (
theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)
) # [D/2]
# assert interpolation_factor == 1.0, f"interpolation_factor: {interpolation_factor}"
freqs = torch.outer(pos * interpolation_factor, freqs) # [S, D/2]
if use_real:
freqs_cos = freqs.cos().repeat_interleave(2, dim=1) # [S, D]
freqs_sin = freqs.sin().repeat_interleave(2, dim=1) # [S, D]
return freqs_cos, freqs_sin
else:
freqs_cis = torch.polar(
torch.ones_like(freqs), freqs
) # complex64 # [S, D/2]
return freqs_cis
def get_nd_rotary_pos_embed(
rope_dim_list,
start,
*args,
theta=10000.0,
use_real=False,
theta_rescale_factor: Union[float, List[float]] = 1.0,
interpolation_factor: Union[float, List[float]] = 1.0,
):
"""
This is a n-d version of precompute_freqs_cis, which is a RoPE for tokens with n-d structure.
Args:
rope_dim_list (list of int): Dimension of each rope. len(rope_dim_list) should equal to n.
sum(rope_dim_list) should equal to head_dim of attention layer.
start (int | tuple of int | list of int): If len(args) == 0, start is num; If len(args) == 1, start is start,
args[0] is stop, step is 1; If len(args) == 2, start is start, args[0] is stop, args[1] is num.
*args: See above.
theta (float): Scaling factor for frequency computation. Defaults to 10000.0.
use_real (bool): If True, return real part and imaginary part separately. Otherwise, return complex numbers.
Some libraries such as TensorRT does not support complex64 data type. So it is useful to provide a real
part and an imaginary part separately.
theta_rescale_factor (float): Rescale factor for theta. Defaults to 1.0.
Returns:
pos_embed (torch.Tensor): [HW, D/2]
"""
grid = get_meshgrid_nd(
start, *args, dim=len(rope_dim_list)
) # [3, W, H, D] / [2, W, H]
if isinstance(theta_rescale_factor, int) or isinstance(theta_rescale_factor, float):
theta_rescale_factor = [theta_rescale_factor] * len(rope_dim_list)
elif isinstance(theta_rescale_factor, list) and len(theta_rescale_factor) == 1:
theta_rescale_factor = [theta_rescale_factor[0]] * len(rope_dim_list)
assert len(theta_rescale_factor) == len(
rope_dim_list
), "len(theta_rescale_factor) should equal to len(rope_dim_list)"
if isinstance(interpolation_factor, int) or isinstance(interpolation_factor, float):
interpolation_factor = [interpolation_factor] * len(rope_dim_list)
elif isinstance(interpolation_factor, list) and len(interpolation_factor) == 1:
interpolation_factor = [interpolation_factor[0]] * len(rope_dim_list)
assert len(interpolation_factor) == len(
rope_dim_list
), "len(interpolation_factor) should equal to len(rope_dim_list)"
# use 1/ndim of dimensions to encode grid_axis
embs = []
for i in range(len(rope_dim_list)):
emb = get_1d_rotary_pos_embed(
rope_dim_list[i],
grid[i].reshape(-1),
theta,
use_real=use_real,
theta_rescale_factor=theta_rescale_factor[i],
interpolation_factor=interpolation_factor[i],
) # 2 x [WHD, rope_dim_list[i]]
embs.append(emb)
if use_real:
cos = torch.cat([emb[0] for emb in embs], dim=1) # (WHD, D/2)
sin = torch.cat([emb[1] for emb in embs], dim=1) # (WHD, D/2)
return cos, sin
else:
emb = torch.cat(embs, dim=1) # (WHD, D/2)
return emb
freqs_cos, freqs_sin = get_nd_rotary_pos_embed(
[16, 56, 56],
[latents.shape[2], latents.shape[3] // 2, latents.shape[4] // 2],
theta=256,
use_real=True,
theta_rescale_factor=1,
)
return freqs_cos, freqs_sin
class PatchEmbed(torch.nn.Module):
def __init__(self, patch_size=(1, 2, 2), in_channels=16, embed_dim=3072):
super().__init__()
self.proj = torch.nn.Conv3d(in_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x):
x = self.proj(x)
x = x.flatten(2).transpose(1, 2)
return x
class IndividualTokenRefinerBlock(torch.nn.Module):
def __init__(self, hidden_size=3072, num_heads=24):
super().__init__()
self.num_heads = num_heads
self.norm1 = torch.nn.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6)
self.self_attn_qkv = torch.nn.Linear(hidden_size, hidden_size * 3)
self.self_attn_proj = torch.nn.Linear(hidden_size, hidden_size)
self.norm2 = torch.nn.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6)
self.mlp = torch.nn.Sequential(
torch.nn.Linear(hidden_size, hidden_size * 4),
torch.nn.SiLU(),
torch.nn.Linear(hidden_size * 4, hidden_size)
)
self.adaLN_modulation = torch.nn.Sequential(
torch.nn.SiLU(),
torch.nn.Linear(hidden_size, hidden_size * 2, device="cuda", dtype=torch.bfloat16),
)
def forward(self, x, c, attn_mask=None):
gate_msa, gate_mlp = self.adaLN_modulation(c).chunk(2, dim=1)
norm_x = self.norm1(x)
qkv = self.self_attn_qkv(norm_x)
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
attn = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask)
attn = rearrange(attn, "B H L D -> B L (H D)")
x = x + self.self_attn_proj(attn) * gate_msa.unsqueeze(1)
x = x + self.mlp(self.norm2(x)) * gate_mlp.unsqueeze(1)
return x
class SingleTokenRefiner(torch.nn.Module):
def __init__(self, in_channels=4096, hidden_size=3072, depth=2):
super().__init__()
self.input_embedder = torch.nn.Linear(in_channels, hidden_size, bias=True)
self.t_embedder = TimestepEmbeddings(256, hidden_size, computation_device="cpu")
self.c_embedder = torch.nn.Sequential(
torch.nn.Linear(in_channels, hidden_size),
torch.nn.SiLU(),
torch.nn.Linear(hidden_size, hidden_size)
)
self.blocks = torch.nn.ModuleList([IndividualTokenRefinerBlock(hidden_size=hidden_size) for _ in range(depth)])
def forward(self, x, t, mask=None):
timestep_aware_representations = self.t_embedder(t, dtype=torch.float32)
mask_float = mask.float().unsqueeze(-1)
context_aware_representations = (x * mask_float).sum(dim=1) / mask_float.sum(dim=1)
context_aware_representations = self.c_embedder(context_aware_representations)
c = timestep_aware_representations + context_aware_representations
x = self.input_embedder(x)
mask = mask.to(device=x.device, dtype=torch.bool)
mask = repeat(mask, "B L -> B 1 D L", D=mask.shape[-1])
mask = mask & mask.transpose(2, 3)
mask[:, :, :, 0] = True
for block in self.blocks:
x = block(x, c, mask)
return x
class ModulateDiT(torch.nn.Module):
def __init__(self, hidden_size, factor=6):
super().__init__()
self.act = torch.nn.SiLU()
self.linear = torch.nn.Linear(hidden_size, factor * hidden_size)
def forward(self, x):
return self.linear(self.act(x))
def modulate(x, shift=None, scale=None, tr_shift=None, tr_scale=None, tr_token=None):
if tr_shift is not None:
x_zero = x[:, :tr_token] * (1 + tr_scale.unsqueeze(1)) + tr_shift.unsqueeze(1)
x_orig = x[:, tr_token:] * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
x = torch.concat((x_zero, x_orig), dim=1)
return x
if scale is None and shift is None:
return x
elif shift is None:
return x * (1 + scale.unsqueeze(1))
elif scale is None:
return x + shift.unsqueeze(1)
else:
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
def reshape_for_broadcast(
freqs_cis,
x: torch.Tensor,
head_first=False,
):
ndim = x.ndim
assert 0 <= 1 < ndim
if isinstance(freqs_cis, tuple):
# freqs_cis: (cos, sin) in real space
if head_first:
assert freqs_cis[0].shape == (
x.shape[-2],
x.shape[-1],
), f"freqs_cis shape {freqs_cis[0].shape} does not match x shape {x.shape}"
shape = [
d if i == ndim - 2 or i == ndim - 1 else 1
for i, d in enumerate(x.shape)
]
else:
assert freqs_cis[0].shape == (
x.shape[1],
x.shape[-1],
), f"freqs_cis shape {freqs_cis[0].shape} does not match x shape {x.shape}"
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
return freqs_cis[0].view(*shape), freqs_cis[1].view(*shape)
else:
# freqs_cis: values in complex space
if head_first:
assert freqs_cis.shape == (
x.shape[-2],
x.shape[-1],
), f"freqs_cis shape {freqs_cis.shape} does not match x shape {x.shape}"
shape = [
d if i == ndim - 2 or i == ndim - 1 else 1
for i, d in enumerate(x.shape)
]
else:
assert freqs_cis.shape == (
x.shape[1],
x.shape[-1],
), f"freqs_cis shape {freqs_cis.shape} does not match x shape {x.shape}"
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
return freqs_cis.view(*shape)
def rotate_half(x):
x_real, x_imag = (
x.float().reshape(*x.shape[:-1], -1, 2).unbind(-1)
) # [B, S, H, D//2]
return torch.stack([-x_imag, x_real], dim=-1).flatten(3)
def apply_rotary_emb(
xq: torch.Tensor,
xk: torch.Tensor,
freqs_cis,
head_first: bool = False,
):
xk_out = None
if isinstance(freqs_cis, tuple):
cos, sin = reshape_for_broadcast(freqs_cis, xq, head_first) # [S, D]
cos, sin = cos.to(xq.device), sin.to(xq.device)
# real * cos - imag * sin
# imag * cos + real * sin
xq_out = (xq.float() * cos + rotate_half(xq.float()) * sin).type_as(xq)
xk_out = (xk.float() * cos + rotate_half(xk.float()) * sin).type_as(xk)
else:
# view_as_complex will pack [..., D/2, 2](real) to [..., D/2](complex)
xq_ = torch.view_as_complex(
xq.float().reshape(*xq.shape[:-1], -1, 2)
) # [B, S, H, D//2]
freqs_cis = reshape_for_broadcast(freqs_cis, xq_, head_first).to(
xq.device
) # [S, D//2] --> [1, S, 1, D//2]
# (real, imag) * (cos, sin) = (real * cos - imag * sin, imag * cos + real * sin)
# view_as_real will expand [..., D/2](complex) to [..., D/2, 2](real)
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3).type_as(xq)
xk_ = torch.view_as_complex(
xk.float().reshape(*xk.shape[:-1], -1, 2)
) # [B, S, H, D//2]
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3).type_as(xk)
return xq_out, xk_out
def attention(q, k, v):
q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)
x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
x = x.transpose(1, 2).flatten(2, 3)
return x
def apply_gate(x, gate, tr_gate=None, tr_token=None):
if tr_gate is not None:
x_zero = x[:, :tr_token] * tr_gate.unsqueeze(1)
x_orig = x[:, tr_token:] * gate.unsqueeze(1)
return torch.concat((x_zero, x_orig), dim=1)
else:
return x * gate.unsqueeze(1)
class MMDoubleStreamBlockComponent(torch.nn.Module):
def __init__(self, hidden_size=3072, heads_num=24, mlp_width_ratio=4):
super().__init__()
self.heads_num = heads_num
self.mod = ModulateDiT(hidden_size)
self.norm1 = torch.nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.to_qkv = torch.nn.Linear(hidden_size, hidden_size * 3)
self.norm_q = RMSNorm(dim=hidden_size // heads_num, eps=1e-6)
self.norm_k = RMSNorm(dim=hidden_size // heads_num, eps=1e-6)
self.to_out = torch.nn.Linear(hidden_size, hidden_size)
self.norm2 = torch.nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.ff = torch.nn.Sequential(
torch.nn.Linear(hidden_size, hidden_size * mlp_width_ratio),
torch.nn.GELU(approximate="tanh"),
torch.nn.Linear(hidden_size * mlp_width_ratio, hidden_size)
)
def forward(self, hidden_states, conditioning, freqs_cis=None, token_replace_vec=None, tr_token=None):
mod1_shift, mod1_scale, mod1_gate, mod2_shift, mod2_scale, mod2_gate = self.mod(conditioning).chunk(6, dim=-1)
if token_replace_vec is not None:
assert tr_token is not None
tr_mod1_shift, tr_mod1_scale, tr_mod1_gate, tr_mod2_shift, tr_mod2_scale, tr_mod2_gate = self.mod(token_replace_vec).chunk(6, dim=-1)
else:
tr_mod1_shift, tr_mod1_scale, tr_mod1_gate, tr_mod2_shift, tr_mod2_scale, tr_mod2_gate = None, None, None, None, None, None
norm_hidden_states = self.norm1(hidden_states)
norm_hidden_states = modulate(norm_hidden_states, shift=mod1_shift, scale=mod1_scale,
tr_shift=tr_mod1_shift, tr_scale=tr_mod1_scale, tr_token=tr_token)
qkv = self.to_qkv(norm_hidden_states)
q, k, v = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num)
q = self.norm_q(q)
k = self.norm_k(k)
if freqs_cis is not None:
q, k = apply_rotary_emb(q, k, freqs_cis, head_first=False)
return (q, k, v), (mod1_gate, mod2_shift, mod2_scale, mod2_gate), (tr_mod1_gate, tr_mod2_shift, tr_mod2_scale, tr_mod2_gate)
def process_ff(self, hidden_states, attn_output, mod, mod_tr=None, tr_token=None):
mod1_gate, mod2_shift, mod2_scale, mod2_gate = mod
if mod_tr is not None:
tr_mod1_gate, tr_mod2_shift, tr_mod2_scale, tr_mod2_gate = mod_tr
else:
tr_mod1_gate, tr_mod2_shift, tr_mod2_scale, tr_mod2_gate = None, None, None, None
hidden_states = hidden_states + apply_gate(self.to_out(attn_output), mod1_gate, tr_mod1_gate, tr_token)
x = self.ff(modulate(self.norm2(hidden_states), shift=mod2_shift, scale=mod2_scale, tr_shift=tr_mod2_shift, tr_scale=tr_mod2_scale, tr_token=tr_token))
hidden_states = hidden_states + apply_gate(x, mod2_gate, tr_mod2_gate, tr_token)
return hidden_states
class MMDoubleStreamBlock(torch.nn.Module):
def __init__(self, hidden_size=3072, heads_num=24, mlp_width_ratio=4):
super().__init__()
self.component_a = MMDoubleStreamBlockComponent(hidden_size, heads_num, mlp_width_ratio)
self.component_b = MMDoubleStreamBlockComponent(hidden_size, heads_num, mlp_width_ratio)
def forward(self, hidden_states_a, hidden_states_b, conditioning, freqs_cis, token_replace_vec=None, tr_token=None, split_token=71):
(q_a, k_a, v_a), mod_a, mod_tr = self.component_a(hidden_states_a, conditioning, freqs_cis, token_replace_vec, tr_token)
(q_b, k_b, v_b), mod_b, _ = self.component_b(hidden_states_b, conditioning, freqs_cis=None)
q_a, q_b = torch.concat([q_a, q_b[:, :split_token]], dim=1), q_b[:, split_token:].contiguous()
k_a, k_b = torch.concat([k_a, k_b[:, :split_token]], dim=1), k_b[:, split_token:].contiguous()
v_a, v_b = torch.concat([v_a, v_b[:, :split_token]], dim=1), v_b[:, split_token:].contiguous()
attn_output_a = attention(q_a, k_a, v_a)
attn_output_b = attention(q_b, k_b, v_b)
attn_output_a, attn_output_b = attn_output_a[:, :-split_token].contiguous(), torch.concat([attn_output_a[:, -split_token:], attn_output_b], dim=1)
hidden_states_a = self.component_a.process_ff(hidden_states_a, attn_output_a, mod_a, mod_tr, tr_token)
hidden_states_b = self.component_b.process_ff(hidden_states_b, attn_output_b, mod_b)
return hidden_states_a, hidden_states_b
class MMSingleStreamBlockOriginal(torch.nn.Module):
def __init__(self, hidden_size=3072, heads_num=24, mlp_width_ratio=4):
super().__init__()
self.hidden_size = hidden_size
self.heads_num = heads_num
self.mlp_hidden_dim = hidden_size * mlp_width_ratio
self.linear1 = torch.nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
self.linear2 = torch.nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
self.q_norm = RMSNorm(dim=hidden_size // heads_num, eps=1e-6)
self.k_norm = RMSNorm(dim=hidden_size // heads_num, eps=1e-6)
self.pre_norm = torch.nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.mlp_act = torch.nn.GELU(approximate="tanh")
self.modulation = ModulateDiT(hidden_size, factor=3)
def forward(self, x, vec, freqs_cis=None, txt_len=256):
mod_shift, mod_scale, mod_gate = self.modulation(vec).chunk(3, dim=-1)
x_mod = modulate(self.pre_norm(x), shift=mod_shift, scale=mod_scale)
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
q, k, v = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num)
q = self.q_norm(q)
k = self.k_norm(k)
q_a, q_b = q[:, :-txt_len, :, :], q[:, -txt_len:, :, :]
k_a, k_b = k[:, :-txt_len, :, :], k[:, -txt_len:, :, :]
q_a, k_a = apply_rotary_emb(q_a, k_a, freqs_cis, head_first=False)
q = torch.cat((q_a, q_b), dim=1)
k = torch.cat((k_a, k_b), dim=1)
attn_output_a = attention(q[:, :-185].contiguous(), k[:, :-185].contiguous(), v[:, :-185].contiguous())
attn_output_b = attention(q[:, -185:].contiguous(), k[:, -185:].contiguous(), v[:, -185:].contiguous())
attn_output = torch.concat([attn_output_a, attn_output_b], dim=1)
output = self.linear2(torch.cat((attn_output, self.mlp_act(mlp)), 2))
return x + output * mod_gate.unsqueeze(1)
class MMSingleStreamBlock(torch.nn.Module):
def __init__(self, hidden_size=3072, heads_num=24, mlp_width_ratio=4):
super().__init__()
self.heads_num = heads_num
self.mod = ModulateDiT(hidden_size, factor=3)
self.norm = torch.nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.to_qkv = torch.nn.Linear(hidden_size, hidden_size * 3)
self.norm_q = RMSNorm(dim=hidden_size // heads_num, eps=1e-6)
self.norm_k = RMSNorm(dim=hidden_size // heads_num, eps=1e-6)
self.to_out = torch.nn.Linear(hidden_size, hidden_size)
self.ff = torch.nn.Sequential(
torch.nn.Linear(hidden_size, hidden_size * mlp_width_ratio),
torch.nn.GELU(approximate="tanh"),
torch.nn.Linear(hidden_size * mlp_width_ratio, hidden_size, bias=False)
)
def forward(self, hidden_states, conditioning, freqs_cis=None, txt_len=256, token_replace_vec=None, tr_token=None, split_token=71):
mod_shift, mod_scale, mod_gate = self.mod(conditioning).chunk(3, dim=-1)
if token_replace_vec is not None:
assert tr_token is not None
tr_mod_shift, tr_mod_scale, tr_mod_gate = self.mod(token_replace_vec).chunk(3, dim=-1)
else:
tr_mod_shift, tr_mod_scale, tr_mod_gate = None, None, None
norm_hidden_states = self.norm(hidden_states)
norm_hidden_states = modulate(norm_hidden_states, shift=mod_shift, scale=mod_scale,
tr_shift=tr_mod_shift, tr_scale=tr_mod_scale, tr_token=tr_token)
qkv = self.to_qkv(norm_hidden_states)
q, k, v = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num)
q = self.norm_q(q)
k = self.norm_k(k)
q_a, q_b = q[:, :-txt_len, :, :], q[:, -txt_len:, :, :]
k_a, k_b = k[:, :-txt_len, :, :], k[:, -txt_len:, :, :]
q_a, k_a = apply_rotary_emb(q_a, k_a, freqs_cis, head_first=False)
v_len = txt_len - split_token
q_a, q_b = torch.concat([q_a, q_b[:, :split_token]], dim=1), q_b[:, split_token:].contiguous()
k_a, k_b = torch.concat([k_a, k_b[:, :split_token]], dim=1), k_b[:, split_token:].contiguous()
v_a, v_b = v[:, :-v_len].contiguous(), v[:, -v_len:].contiguous()
attn_output_a = attention(q_a, k_a, v_a)
attn_output_b = attention(q_b, k_b, v_b)
attn_output = torch.concat([attn_output_a, attn_output_b], dim=1)
hidden_states = hidden_states + apply_gate(self.to_out(attn_output), mod_gate, tr_mod_gate, tr_token)
hidden_states = hidden_states + apply_gate(self.ff(norm_hidden_states), mod_gate, tr_mod_gate, tr_token)
return hidden_states
class FinalLayer(torch.nn.Module):
def __init__(self, hidden_size=3072, patch_size=(1, 2, 2), out_channels=16):
super().__init__()
self.norm_final = torch.nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = torch.nn.Linear(hidden_size, patch_size[0] * patch_size[1] * patch_size[2] * out_channels)
self.adaLN_modulation = torch.nn.Sequential(torch.nn.SiLU(), torch.nn.Linear(hidden_size, 2 * hidden_size))
def forward(self, x, c):
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
x = modulate(self.norm_final(x), shift=shift, scale=scale)
x = self.linear(x)
return x
class HunyuanVideoDiT(torch.nn.Module):
def __init__(self, in_channels=16, hidden_size=3072, text_dim=4096, num_double_blocks=20, num_single_blocks=40, guidance_embed=True):
super().__init__()
self.img_in = PatchEmbed(in_channels=in_channels, embed_dim=hidden_size)
self.txt_in = SingleTokenRefiner(in_channels=text_dim, hidden_size=hidden_size)
self.time_in = TimestepEmbeddings(256, hidden_size, computation_device="cpu")
self.vector_in = torch.nn.Sequential(
torch.nn.Linear(768, hidden_size),
torch.nn.SiLU(),
torch.nn.Linear(hidden_size, hidden_size)
)
self.guidance_in = TimestepEmbeddings(256, hidden_size, computation_device="cpu") if guidance_embed else None
self.double_blocks = torch.nn.ModuleList([MMDoubleStreamBlock(hidden_size) for _ in range(num_double_blocks)])
self.single_blocks = torch.nn.ModuleList([MMSingleStreamBlock(hidden_size) for _ in range(num_single_blocks)])
self.final_layer = FinalLayer(hidden_size)
# TODO: remove these parameters
self.dtype = torch.bfloat16
self.patch_size = [1, 2, 2]
self.hidden_size = 3072
self.heads_num = 24
self.rope_dim_list = [16, 56, 56]
def unpatchify(self, x, T, H, W):
x = rearrange(x, "B (T H W) (C pT pH pW) -> B C (T pT) (H pH) (W pW)", H=H, W=W, pT=1, pH=2, pW=2)
return x
def enable_block_wise_offload(self, warm_device="cuda", cold_device="cpu"):
self.warm_device = warm_device
self.cold_device = cold_device
self.to(self.cold_device)
def load_models_to_device(self, loadmodel_names=[], device="cpu"):
for model_name in loadmodel_names:
model = getattr(self, model_name)
if model is not None:
model.to(device)
torch.cuda.empty_cache()
def prepare_freqs(self, latents):
return HunyuanVideoRope(latents)
def forward(
self,
x: torch.Tensor,
t: torch.Tensor,
prompt_emb: torch.Tensor = None,
text_mask: torch.Tensor = None,
pooled_prompt_emb: torch.Tensor = None,
freqs_cos: torch.Tensor = None,
freqs_sin: torch.Tensor = None,
guidance: torch.Tensor = None,
**kwargs
):
B, C, T, H, W = x.shape
vec = self.time_in(t, dtype=torch.float32) + self.vector_in(pooled_prompt_emb)
if self.guidance_in is not None:
vec += self.guidance_in(guidance * 1000, dtype=torch.float32)
img = self.img_in(x)
txt = self.txt_in(prompt_emb, t, text_mask)
for block in tqdm(self.double_blocks, desc="Double stream blocks"):
img, txt = block(img, txt, vec, (freqs_cos, freqs_sin))
x = torch.concat([img, txt], dim=1)
for block in tqdm(self.single_blocks, desc="Single stream blocks"):
x = block(x, vec, (freqs_cos, freqs_sin))
img = x[:, :-256]
img = self.final_layer(img, vec)
img = self.unpatchify(img, T=T//1, H=H//2, W=W//2)
return img
def enable_auto_offload(self, dtype=torch.bfloat16, device="cuda"):
def cast_to(weight, dtype=None, device=None, copy=False):
if device is None or weight.device == device:
if not copy:
if dtype is None or weight.dtype == dtype:
return weight
return weight.to(dtype=dtype, copy=copy)
r = torch.empty_like(weight, dtype=dtype, device=device)
r.copy_(weight)
return r
def cast_weight(s, input=None, dtype=None, device=None):
if input is not None:
if dtype is None:
dtype = input.dtype
if device is None:
device = input.device
weight = cast_to(s.weight, dtype, device)
return weight
def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None):
if input is not None:
if dtype is None:
dtype = input.dtype
if bias_dtype is None:
bias_dtype = dtype
if device is None:
device = input.device
weight = cast_to(s.weight, dtype, device)
bias = cast_to(s.bias, bias_dtype, device) if s.bias is not None else None
return weight, bias
class quantized_layer:
class Linear(torch.nn.Linear):
def __init__(self, *args, dtype=torch.bfloat16, device="cuda", **kwargs):
super().__init__(*args, **kwargs)
self.dtype = dtype
self.device = device
def block_forward_(self, x, i, j, dtype, device):
weight_ = cast_to(
self.weight[j * self.block_size: (j + 1) * self.block_size, i * self.block_size: (i + 1) * self.block_size],
dtype=dtype, device=device
)
if self.bias is None or i > 0:
bias_ = None
else:
bias_ = cast_to(self.bias[j * self.block_size: (j + 1) * self.block_size], dtype=dtype, device=device)
x_ = x[..., i * self.block_size: (i + 1) * self.block_size]
y_ = torch.nn.functional.linear(x_, weight_, bias_)
del x_, weight_, bias_
torch.cuda.empty_cache()
return y_
def block_forward(self, x, **kwargs):
# This feature can only reduce 2GB VRAM, so we disable it.
y = torch.zeros(x.shape[:-1] + (self.out_features,), dtype=x.dtype, device=x.device)
for i in range((self.in_features + self.block_size - 1) // self.block_size):
for j in range((self.out_features + self.block_size - 1) // self.block_size):
y[..., j * self.block_size: (j + 1) * self.block_size] += self.block_forward_(x, i, j, dtype=x.dtype, device=x.device)
return y
def forward(self, x, **kwargs):
weight, bias = cast_bias_weight(self, x, dtype=self.dtype, device=self.device)
return torch.nn.functional.linear(x, weight, bias)
class RMSNorm(torch.nn.Module):
def __init__(self, module, dtype=torch.bfloat16, device="cuda"):
super().__init__()
self.module = module
self.dtype = dtype
self.device = device
def forward(self, hidden_states, **kwargs):
input_dtype = hidden_states.dtype
variance = hidden_states.to(torch.float32).square().mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.module.eps)
hidden_states = hidden_states.to(input_dtype)
if self.module.weight is not None:
weight = cast_weight(self.module, hidden_states, dtype=torch.bfloat16, device="cuda")
hidden_states = hidden_states * weight
return hidden_states
class Conv3d(torch.nn.Conv3d):
def __init__(self, *args, dtype=torch.bfloat16, device="cuda", **kwargs):
super().__init__(*args, **kwargs)
self.dtype = dtype
self.device = device
def forward(self, x):
weight, bias = cast_bias_weight(self, x, dtype=self.dtype, device=self.device)
return torch.nn.functional.conv3d(x, weight, bias, self.stride, self.padding, self.dilation, self.groups)
class LayerNorm(torch.nn.LayerNorm):
def __init__(self, *args, dtype=torch.bfloat16, device="cuda", **kwargs):
super().__init__(*args, **kwargs)
self.dtype = dtype
self.device = device
def forward(self, x):
if self.weight is not None and self.bias is not None:
weight, bias = cast_bias_weight(self, x, dtype=self.dtype, device=self.device)
return torch.nn.functional.layer_norm(x, self.normalized_shape, weight, bias, self.eps)
else:
return torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
def replace_layer(model, dtype=torch.bfloat16, device="cuda"):
for name, module in model.named_children():
if isinstance(module, torch.nn.Linear):
with init_weights_on_device():
new_layer = quantized_layer.Linear(
module.in_features, module.out_features, bias=module.bias is not None,
dtype=dtype, device=device
)
new_layer.load_state_dict(module.state_dict(), assign=True)
setattr(model, name, new_layer)
elif isinstance(module, torch.nn.Conv3d):
with init_weights_on_device():
new_layer = quantized_layer.Conv3d(
module.in_channels, module.out_channels, kernel_size=module.kernel_size, stride=module.stride,
dtype=dtype, device=device
)
new_layer.load_state_dict(module.state_dict(), assign=True)
setattr(model, name, new_layer)
elif isinstance(module, RMSNorm):
new_layer = quantized_layer.RMSNorm(
module,
dtype=dtype, device=device
)
setattr(model, name, new_layer)
elif isinstance(module, torch.nn.LayerNorm):
with init_weights_on_device():
new_layer = quantized_layer.LayerNorm(
module.normalized_shape, elementwise_affine=module.elementwise_affine, eps=module.eps,
dtype=dtype, device=device
)
new_layer.load_state_dict(module.state_dict(), assign=True)
setattr(model, name, new_layer)
else:
replace_layer(module, dtype=dtype, device=device)
replace_layer(self, dtype=dtype, device=device)
@staticmethod
def state_dict_converter():
return HunyuanVideoDiTStateDictConverter()
class HunyuanVideoDiTStateDictConverter:
def __init__(self):
pass
def from_civitai(self, state_dict):
origin_hash_key = hash_state_dict_keys(state_dict, with_shape=True)
if "module" in state_dict:
state_dict = state_dict["module"]
direct_dict = {
"img_in.proj": "img_in.proj",
"time_in.mlp.0": "time_in.timestep_embedder.0",
"time_in.mlp.2": "time_in.timestep_embedder.2",
"vector_in.in_layer": "vector_in.0",
"vector_in.out_layer": "vector_in.2",
"guidance_in.mlp.0": "guidance_in.timestep_embedder.0",
"guidance_in.mlp.2": "guidance_in.timestep_embedder.2",
"txt_in.input_embedder": "txt_in.input_embedder",
"txt_in.t_embedder.mlp.0": "txt_in.t_embedder.timestep_embedder.0",
"txt_in.t_embedder.mlp.2": "txt_in.t_embedder.timestep_embedder.2",
"txt_in.c_embedder.linear_1": "txt_in.c_embedder.0",
"txt_in.c_embedder.linear_2": "txt_in.c_embedder.2",
"final_layer.linear": "final_layer.linear",
"final_layer.adaLN_modulation.1": "final_layer.adaLN_modulation.1",
}
txt_suffix_dict = {
"norm1": "norm1",
"self_attn_qkv": "self_attn_qkv",
"self_attn_proj": "self_attn_proj",
"norm2": "norm2",
"mlp.fc1": "mlp.0",
"mlp.fc2": "mlp.2",
"adaLN_modulation.1": "adaLN_modulation.1",
}
double_suffix_dict = {
"img_mod.linear": "component_a.mod.linear",
"img_attn_qkv": "component_a.to_qkv",
"img_attn_q_norm": "component_a.norm_q",
"img_attn_k_norm": "component_a.norm_k",
"img_attn_proj": "component_a.to_out",
"img_mlp.fc1": "component_a.ff.0",
"img_mlp.fc2": "component_a.ff.2",
"txt_mod.linear": "component_b.mod.linear",
"txt_attn_qkv": "component_b.to_qkv",
"txt_attn_q_norm": "component_b.norm_q",
"txt_attn_k_norm": "component_b.norm_k",
"txt_attn_proj": "component_b.to_out",
"txt_mlp.fc1": "component_b.ff.0",
"txt_mlp.fc2": "component_b.ff.2",
}
single_suffix_dict = {
"linear1": ["to_qkv", "ff.0"],
"linear2": ["to_out", "ff.2"],
"q_norm": "norm_q",
"k_norm": "norm_k",
"modulation.linear": "mod.linear",
}
# single_suffix_dict = {
# "linear1": "linear1",
# "linear2": "linear2",
# "q_norm": "q_norm",
# "k_norm": "k_norm",
# "modulation.linear": "modulation.linear",
# }
state_dict_ = {}
for name, param in state_dict.items():
names = name.split(".")
direct_name = ".".join(names[:-1])
if direct_name in direct_dict:
name_ = direct_dict[direct_name] + "." + names[-1]
state_dict_[name_] = param
elif names[0] == "double_blocks":
prefix = ".".join(names[:2])
suffix = ".".join(names[2:-1])
name_ = prefix + "." + double_suffix_dict[suffix] + "." + names[-1]
state_dict_[name_] = param
elif names[0] == "single_blocks":
prefix = ".".join(names[:2])
suffix = ".".join(names[2:-1])
if isinstance(single_suffix_dict[suffix], list):
if suffix == "linear1":
name_a, name_b = single_suffix_dict[suffix]
param_a, param_b = torch.split(param, (3072*3, 3072*4), dim=0)
state_dict_[prefix + "." + name_a + "." + names[-1]] = param_a
state_dict_[prefix + "." + name_b + "." + names[-1]] = param_b
elif suffix == "linear2":
if names[-1] == "weight":
name_a, name_b = single_suffix_dict[suffix]
param_a, param_b = torch.split(param, (3072*1, 3072*4), dim=-1)
state_dict_[prefix + "." + name_a + "." + names[-1]] = param_a
state_dict_[prefix + "." + name_b + "." + names[-1]] = param_b
else:
name_a, name_b = single_suffix_dict[suffix]
state_dict_[prefix + "." + name_a + "." + names[-1]] = param
else:
pass
else:
name_ = prefix + "." + single_suffix_dict[suffix] + "." + names[-1]
state_dict_[name_] = param
elif names[0] == "txt_in":
prefix = ".".join(names[:4]).replace(".individual_token_refiner.", ".")
suffix = ".".join(names[4:-1])
name_ = prefix + "." + txt_suffix_dict[suffix] + "." + names[-1]
state_dict_[name_] = param
else:
pass
return state_dict_
|