File size: 42,030 Bytes
4bf9661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
import torch
from .sd3_dit import TimestepEmbeddings, RMSNorm
from .utils import init_weights_on_device
from einops import rearrange, repeat
from tqdm import tqdm
from typing import Union, Tuple, List
from .utils import hash_state_dict_keys


def HunyuanVideoRope(latents):
    def _to_tuple(x, dim=2):
        if isinstance(x, int):
            return (x,) * dim
        elif len(x) == dim:
            return x
        else:
            raise ValueError(f"Expected length {dim} or int, but got {x}")


    def get_meshgrid_nd(start, *args, dim=2):
        """
        Get n-D meshgrid with start, stop and num.

        Args:
            start (int or tuple): If len(args) == 0, start is num; If len(args) == 1, start is start, args[0] is stop,
                step is 1; If len(args) == 2, start is start, args[0] is stop, args[1] is num. For n-dim, start/stop/num
                should be int or n-tuple. If n-tuple is provided, the meshgrid will be stacked following the dim order in
                n-tuples.
            *args: See above.
            dim (int): Dimension of the meshgrid. Defaults to 2.

        Returns:
            grid (np.ndarray): [dim, ...]
        """
        if len(args) == 0:
            # start is grid_size
            num = _to_tuple(start, dim=dim)
            start = (0,) * dim
            stop = num
        elif len(args) == 1:
            # start is start, args[0] is stop, step is 1
            start = _to_tuple(start, dim=dim)
            stop = _to_tuple(args[0], dim=dim)
            num = [stop[i] - start[i] for i in range(dim)]
        elif len(args) == 2:
            # start is start, args[0] is stop, args[1] is num
            start = _to_tuple(start, dim=dim)  # Left-Top       eg: 12,0
            stop = _to_tuple(args[0], dim=dim)  # Right-Bottom   eg: 20,32
            num = _to_tuple(args[1], dim=dim)  # Target Size    eg: 32,124
        else:
            raise ValueError(f"len(args) should be 0, 1 or 2, but got {len(args)}")

        # PyTorch implement of np.linspace(start[i], stop[i], num[i], endpoint=False)
        axis_grid = []
        for i in range(dim):
            a, b, n = start[i], stop[i], num[i]
            g = torch.linspace(a, b, n + 1, dtype=torch.float32)[:n]
            axis_grid.append(g)
        grid = torch.meshgrid(*axis_grid, indexing="ij")  # dim x [W, H, D]
        grid = torch.stack(grid, dim=0)  # [dim, W, H, D]

        return grid


    def get_1d_rotary_pos_embed(
        dim: int,
        pos: Union[torch.FloatTensor, int],
        theta: float = 10000.0,
        use_real: bool = False,
        theta_rescale_factor: float = 1.0,
        interpolation_factor: float = 1.0,
    ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
        """
        Precompute the frequency tensor for complex exponential (cis) with given dimensions.
        (Note: `cis` means `cos + i * sin`, where i is the imaginary unit.)

        This function calculates a frequency tensor with complex exponential using the given dimension 'dim'
        and the end index 'end'. The 'theta' parameter scales the frequencies.
        The returned tensor contains complex values in complex64 data type.

        Args:
            dim (int): Dimension of the frequency tensor.
            pos (int or torch.FloatTensor): Position indices for the frequency tensor. [S] or scalar
            theta (float, optional): Scaling factor for frequency computation. Defaults to 10000.0.
            use_real (bool, optional): If True, return real part and imaginary part separately.
                                    Otherwise, return complex numbers.
            theta_rescale_factor (float, optional): Rescale factor for theta. Defaults to 1.0.

        Returns:
            freqs_cis: Precomputed frequency tensor with complex exponential. [S, D/2]
            freqs_cos, freqs_sin: Precomputed frequency tensor with real and imaginary parts separately. [S, D]
        """
        if isinstance(pos, int):
            pos = torch.arange(pos).float()

        # proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
        # has some connection to NTK literature
        if theta_rescale_factor != 1.0:
            theta *= theta_rescale_factor ** (dim / (dim - 2))

        freqs = 1.0 / (
            theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)
        )  # [D/2]
        # assert interpolation_factor == 1.0, f"interpolation_factor: {interpolation_factor}"
        freqs = torch.outer(pos * interpolation_factor, freqs)  # [S, D/2]
        if use_real:
            freqs_cos = freqs.cos().repeat_interleave(2, dim=1)  # [S, D]
            freqs_sin = freqs.sin().repeat_interleave(2, dim=1)  # [S, D]
            return freqs_cos, freqs_sin
        else:
            freqs_cis = torch.polar(
                torch.ones_like(freqs), freqs
            )  # complex64     # [S, D/2]
            return freqs_cis


    def get_nd_rotary_pos_embed(
        rope_dim_list,
        start,
        *args,
        theta=10000.0,
        use_real=False,
        theta_rescale_factor: Union[float, List[float]] = 1.0,
        interpolation_factor: Union[float, List[float]] = 1.0,
    ):
        """
        This is a n-d version of precompute_freqs_cis, which is a RoPE for tokens with n-d structure.

        Args:
            rope_dim_list (list of int): Dimension of each rope. len(rope_dim_list) should equal to n.
                sum(rope_dim_list) should equal to head_dim of attention layer.
            start (int | tuple of int | list of int): If len(args) == 0, start is num; If len(args) == 1, start is start,
                args[0] is stop, step is 1; If len(args) == 2, start is start, args[0] is stop, args[1] is num.
            *args: See above.
            theta (float): Scaling factor for frequency computation. Defaults to 10000.0.
            use_real (bool): If True, return real part and imaginary part separately. Otherwise, return complex numbers.
                Some libraries such as TensorRT does not support complex64 data type. So it is useful to provide a real
                part and an imaginary part separately.
            theta_rescale_factor (float): Rescale factor for theta. Defaults to 1.0.

        Returns:
            pos_embed (torch.Tensor): [HW, D/2]
        """

        grid = get_meshgrid_nd(
            start, *args, dim=len(rope_dim_list)
        )  # [3, W, H, D] / [2, W, H]

        if isinstance(theta_rescale_factor, int) or isinstance(theta_rescale_factor, float):
            theta_rescale_factor = [theta_rescale_factor] * len(rope_dim_list)
        elif isinstance(theta_rescale_factor, list) and len(theta_rescale_factor) == 1:
            theta_rescale_factor = [theta_rescale_factor[0]] * len(rope_dim_list)
        assert len(theta_rescale_factor) == len(
            rope_dim_list
        ), "len(theta_rescale_factor) should equal to len(rope_dim_list)"

        if isinstance(interpolation_factor, int) or isinstance(interpolation_factor, float):
            interpolation_factor = [interpolation_factor] * len(rope_dim_list)
        elif isinstance(interpolation_factor, list) and len(interpolation_factor) == 1:
            interpolation_factor = [interpolation_factor[0]] * len(rope_dim_list)
        assert len(interpolation_factor) == len(
            rope_dim_list
        ), "len(interpolation_factor) should equal to len(rope_dim_list)"

        # use 1/ndim of dimensions to encode grid_axis
        embs = []
        for i in range(len(rope_dim_list)):
            emb = get_1d_rotary_pos_embed(
                rope_dim_list[i],
                grid[i].reshape(-1),
                theta,
                use_real=use_real,
                theta_rescale_factor=theta_rescale_factor[i],
                interpolation_factor=interpolation_factor[i],
            )  # 2 x [WHD, rope_dim_list[i]]
            embs.append(emb)

        if use_real:
            cos = torch.cat([emb[0] for emb in embs], dim=1)  # (WHD, D/2)
            sin = torch.cat([emb[1] for emb in embs], dim=1)  # (WHD, D/2)
            return cos, sin
        else:
            emb = torch.cat(embs, dim=1)  # (WHD, D/2)
            return emb

    freqs_cos, freqs_sin = get_nd_rotary_pos_embed(
        [16, 56, 56],
        [latents.shape[2], latents.shape[3] // 2, latents.shape[4] // 2],
        theta=256,
        use_real=True,
        theta_rescale_factor=1,
    )
    return freqs_cos, freqs_sin


class PatchEmbed(torch.nn.Module):
    def __init__(self, patch_size=(1, 2, 2), in_channels=16, embed_dim=3072):
        super().__init__()
        self.proj = torch.nn.Conv3d(in_channels, embed_dim, kernel_size=patch_size, stride=patch_size)

    def forward(self, x):
        x = self.proj(x)
        x = x.flatten(2).transpose(1, 2)
        return x


class IndividualTokenRefinerBlock(torch.nn.Module):
    def __init__(self, hidden_size=3072, num_heads=24):
        super().__init__()
        self.num_heads = num_heads
        self.norm1 = torch.nn.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6)
        self.self_attn_qkv = torch.nn.Linear(hidden_size, hidden_size * 3)
        self.self_attn_proj = torch.nn.Linear(hidden_size, hidden_size)

        self.norm2 = torch.nn.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6)
        self.mlp = torch.nn.Sequential(
            torch.nn.Linear(hidden_size, hidden_size * 4),
            torch.nn.SiLU(),
            torch.nn.Linear(hidden_size * 4, hidden_size)
        )
        self.adaLN_modulation = torch.nn.Sequential(
            torch.nn.SiLU(),
            torch.nn.Linear(hidden_size, hidden_size * 2, device="cuda", dtype=torch.bfloat16),
        )

    def forward(self, x, c, attn_mask=None):
        gate_msa, gate_mlp = self.adaLN_modulation(c).chunk(2, dim=1)

        norm_x = self.norm1(x)
        qkv = self.self_attn_qkv(norm_x)
        q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)

        attn = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask)
        attn = rearrange(attn, "B H L D -> B L (H D)")

        x = x + self.self_attn_proj(attn) * gate_msa.unsqueeze(1)
        x = x + self.mlp(self.norm2(x)) * gate_mlp.unsqueeze(1)

        return x


class SingleTokenRefiner(torch.nn.Module):
    def __init__(self, in_channels=4096, hidden_size=3072, depth=2):
        super().__init__()
        self.input_embedder = torch.nn.Linear(in_channels, hidden_size, bias=True)
        self.t_embedder = TimestepEmbeddings(256, hidden_size, computation_device="cpu")
        self.c_embedder = torch.nn.Sequential(
            torch.nn.Linear(in_channels, hidden_size),
            torch.nn.SiLU(),
            torch.nn.Linear(hidden_size, hidden_size)
        )
        self.blocks = torch.nn.ModuleList([IndividualTokenRefinerBlock(hidden_size=hidden_size) for _ in range(depth)])

    def forward(self, x, t, mask=None):
        timestep_aware_representations = self.t_embedder(t, dtype=torch.float32)

        mask_float = mask.float().unsqueeze(-1)
        context_aware_representations = (x * mask_float).sum(dim=1) / mask_float.sum(dim=1)
        context_aware_representations = self.c_embedder(context_aware_representations)
        c = timestep_aware_representations + context_aware_representations

        x = self.input_embedder(x)

        mask = mask.to(device=x.device, dtype=torch.bool)
        mask = repeat(mask, "B L -> B 1 D L", D=mask.shape[-1])
        mask = mask & mask.transpose(2, 3)
        mask[:, :, :, 0] = True

        for block in self.blocks:
            x = block(x, c, mask)

        return x


class ModulateDiT(torch.nn.Module):
    def __init__(self, hidden_size, factor=6):
        super().__init__()
        self.act = torch.nn.SiLU()
        self.linear = torch.nn.Linear(hidden_size, factor * hidden_size)

    def forward(self, x):
        return self.linear(self.act(x))


def modulate(x, shift=None, scale=None, tr_shift=None, tr_scale=None, tr_token=None):
    if tr_shift is not None:
        x_zero = x[:, :tr_token] * (1 + tr_scale.unsqueeze(1)) + tr_shift.unsqueeze(1)
        x_orig = x[:, tr_token:] * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
        x = torch.concat((x_zero, x_orig), dim=1)
        return x
    if scale is None and shift is None:
        return x
    elif shift is None:
        return x * (1 + scale.unsqueeze(1))
    elif scale is None:
        return x + shift.unsqueeze(1)
    else:
        return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)


def reshape_for_broadcast(
    freqs_cis,
    x: torch.Tensor,
    head_first=False,
):
    ndim = x.ndim
    assert 0 <= 1 < ndim

    if isinstance(freqs_cis, tuple):
        # freqs_cis: (cos, sin) in real space
        if head_first:
            assert freqs_cis[0].shape == (
                x.shape[-2],
                x.shape[-1],
            ), f"freqs_cis shape {freqs_cis[0].shape} does not match x shape {x.shape}"
            shape = [
                d if i == ndim - 2 or i == ndim - 1 else 1
                for i, d in enumerate(x.shape)
            ]
        else:
            assert freqs_cis[0].shape == (
                x.shape[1],
                x.shape[-1],
            ), f"freqs_cis shape {freqs_cis[0].shape} does not match x shape {x.shape}"
            shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
        return freqs_cis[0].view(*shape), freqs_cis[1].view(*shape)
    else:
        # freqs_cis: values in complex space
        if head_first:
            assert freqs_cis.shape == (
                x.shape[-2],
                x.shape[-1],
            ), f"freqs_cis shape {freqs_cis.shape} does not match x shape {x.shape}"
            shape = [
                d if i == ndim - 2 or i == ndim - 1 else 1
                for i, d in enumerate(x.shape)
            ]
        else:
            assert freqs_cis.shape == (
                x.shape[1],
                x.shape[-1],
            ), f"freqs_cis shape {freqs_cis.shape} does not match x shape {x.shape}"
            shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
        return freqs_cis.view(*shape)


def rotate_half(x):
    x_real, x_imag = (
        x.float().reshape(*x.shape[:-1], -1, 2).unbind(-1)
    )  # [B, S, H, D//2]
    return torch.stack([-x_imag, x_real], dim=-1).flatten(3)


def apply_rotary_emb(
    xq: torch.Tensor,
    xk: torch.Tensor,
    freqs_cis,
    head_first: bool = False,
):
    xk_out = None
    if isinstance(freqs_cis, tuple):
        cos, sin = reshape_for_broadcast(freqs_cis, xq, head_first)  # [S, D]
        cos, sin = cos.to(xq.device), sin.to(xq.device)
        # real * cos - imag * sin
        # imag * cos + real * sin
        xq_out = (xq.float() * cos + rotate_half(xq.float()) * sin).type_as(xq)
        xk_out = (xk.float() * cos + rotate_half(xk.float()) * sin).type_as(xk)
    else:
        # view_as_complex will pack [..., D/2, 2](real) to [..., D/2](complex)
        xq_ = torch.view_as_complex(
            xq.float().reshape(*xq.shape[:-1], -1, 2)
        )  # [B, S, H, D//2]
        freqs_cis = reshape_for_broadcast(freqs_cis, xq_, head_first).to(
            xq.device
        )  # [S, D//2] --> [1, S, 1, D//2]
        # (real, imag) * (cos, sin) = (real * cos - imag * sin, imag * cos + real * sin)
        # view_as_real will expand [..., D/2](complex) to [..., D/2, 2](real)
        xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3).type_as(xq)
        xk_ = torch.view_as_complex(
            xk.float().reshape(*xk.shape[:-1], -1, 2)
        )  # [B, S, H, D//2]
        xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3).type_as(xk)

    return xq_out, xk_out


def attention(q, k, v):
    q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)
    x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
    x = x.transpose(1, 2).flatten(2, 3)
    return x


def apply_gate(x, gate, tr_gate=None, tr_token=None):
    if tr_gate is not None:
        x_zero = x[:, :tr_token] * tr_gate.unsqueeze(1)
        x_orig = x[:, tr_token:] * gate.unsqueeze(1)
        return torch.concat((x_zero, x_orig), dim=1)
    else:
        return x * gate.unsqueeze(1)


class MMDoubleStreamBlockComponent(torch.nn.Module):
    def __init__(self, hidden_size=3072, heads_num=24, mlp_width_ratio=4):
        super().__init__()
        self.heads_num = heads_num

        self.mod = ModulateDiT(hidden_size)
        self.norm1 = torch.nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)

        self.to_qkv = torch.nn.Linear(hidden_size, hidden_size * 3)
        self.norm_q = RMSNorm(dim=hidden_size // heads_num, eps=1e-6)
        self.norm_k = RMSNorm(dim=hidden_size // heads_num, eps=1e-6)
        self.to_out = torch.nn.Linear(hidden_size, hidden_size)

        self.norm2 = torch.nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.ff = torch.nn.Sequential(
            torch.nn.Linear(hidden_size, hidden_size * mlp_width_ratio),
            torch.nn.GELU(approximate="tanh"),
            torch.nn.Linear(hidden_size * mlp_width_ratio, hidden_size)
        )

    def forward(self, hidden_states, conditioning, freqs_cis=None, token_replace_vec=None, tr_token=None):
        mod1_shift, mod1_scale, mod1_gate, mod2_shift, mod2_scale, mod2_gate = self.mod(conditioning).chunk(6, dim=-1)
        if token_replace_vec is not None:
            assert tr_token is not None
            tr_mod1_shift, tr_mod1_scale, tr_mod1_gate, tr_mod2_shift, tr_mod2_scale, tr_mod2_gate = self.mod(token_replace_vec).chunk(6, dim=-1)
        else:
            tr_mod1_shift, tr_mod1_scale, tr_mod1_gate, tr_mod2_shift, tr_mod2_scale, tr_mod2_gate = None, None, None, None, None, None

        norm_hidden_states = self.norm1(hidden_states)
        norm_hidden_states = modulate(norm_hidden_states, shift=mod1_shift, scale=mod1_scale,
                                      tr_shift=tr_mod1_shift, tr_scale=tr_mod1_scale, tr_token=tr_token)
        qkv = self.to_qkv(norm_hidden_states)
        q, k, v = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num)

        q = self.norm_q(q)
        k = self.norm_k(k)

        if freqs_cis is not None:
            q, k = apply_rotary_emb(q, k, freqs_cis, head_first=False)
        return (q, k, v), (mod1_gate, mod2_shift, mod2_scale, mod2_gate), (tr_mod1_gate, tr_mod2_shift, tr_mod2_scale, tr_mod2_gate)

    def process_ff(self, hidden_states, attn_output, mod, mod_tr=None, tr_token=None):
        mod1_gate, mod2_shift, mod2_scale, mod2_gate = mod
        if mod_tr is not None:
            tr_mod1_gate, tr_mod2_shift, tr_mod2_scale, tr_mod2_gate = mod_tr
        else:
            tr_mod1_gate, tr_mod2_shift, tr_mod2_scale, tr_mod2_gate = None, None, None, None
        hidden_states = hidden_states + apply_gate(self.to_out(attn_output), mod1_gate, tr_mod1_gate, tr_token)
        x = self.ff(modulate(self.norm2(hidden_states), shift=mod2_shift, scale=mod2_scale, tr_shift=tr_mod2_shift, tr_scale=tr_mod2_scale, tr_token=tr_token))
        hidden_states = hidden_states + apply_gate(x, mod2_gate, tr_mod2_gate, tr_token)
        return hidden_states


class MMDoubleStreamBlock(torch.nn.Module):
    def __init__(self, hidden_size=3072, heads_num=24, mlp_width_ratio=4):
        super().__init__()
        self.component_a = MMDoubleStreamBlockComponent(hidden_size, heads_num, mlp_width_ratio)
        self.component_b = MMDoubleStreamBlockComponent(hidden_size, heads_num, mlp_width_ratio)

    def forward(self, hidden_states_a, hidden_states_b, conditioning, freqs_cis, token_replace_vec=None, tr_token=None, split_token=71):
        (q_a, k_a, v_a), mod_a, mod_tr = self.component_a(hidden_states_a, conditioning, freqs_cis, token_replace_vec, tr_token)
        (q_b, k_b, v_b), mod_b, _ = self.component_b(hidden_states_b, conditioning, freqs_cis=None)

        q_a, q_b = torch.concat([q_a, q_b[:, :split_token]], dim=1), q_b[:, split_token:].contiguous()
        k_a, k_b = torch.concat([k_a, k_b[:, :split_token]], dim=1), k_b[:, split_token:].contiguous()
        v_a, v_b = torch.concat([v_a, v_b[:, :split_token]], dim=1), v_b[:, split_token:].contiguous()
        attn_output_a = attention(q_a, k_a, v_a)
        attn_output_b = attention(q_b, k_b, v_b)
        attn_output_a, attn_output_b = attn_output_a[:, :-split_token].contiguous(), torch.concat([attn_output_a[:, -split_token:], attn_output_b], dim=1)

        hidden_states_a = self.component_a.process_ff(hidden_states_a, attn_output_a, mod_a, mod_tr, tr_token)
        hidden_states_b = self.component_b.process_ff(hidden_states_b, attn_output_b, mod_b)
        return hidden_states_a, hidden_states_b


class MMSingleStreamBlockOriginal(torch.nn.Module):
    def __init__(self, hidden_size=3072, heads_num=24, mlp_width_ratio=4):
        super().__init__()
        self.hidden_size = hidden_size
        self.heads_num = heads_num
        self.mlp_hidden_dim = hidden_size * mlp_width_ratio

        self.linear1 = torch.nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
        self.linear2 = torch.nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)

        self.q_norm = RMSNorm(dim=hidden_size // heads_num, eps=1e-6)
        self.k_norm = RMSNorm(dim=hidden_size // heads_num, eps=1e-6)

        self.pre_norm = torch.nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)

        self.mlp_act = torch.nn.GELU(approximate="tanh")
        self.modulation = ModulateDiT(hidden_size, factor=3)

    def forward(self, x, vec, freqs_cis=None, txt_len=256):
        mod_shift, mod_scale, mod_gate = self.modulation(vec).chunk(3, dim=-1)
        x_mod = modulate(self.pre_norm(x), shift=mod_shift, scale=mod_scale)
        qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
        q, k, v = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num)
        q = self.q_norm(q)
        k = self.k_norm(k)

        q_a, q_b = q[:, :-txt_len, :, :], q[:, -txt_len:, :, :]
        k_a, k_b = k[:, :-txt_len, :, :], k[:, -txt_len:, :, :]
        q_a, k_a = apply_rotary_emb(q_a, k_a, freqs_cis, head_first=False)
        q = torch.cat((q_a, q_b), dim=1)
        k = torch.cat((k_a, k_b), dim=1)

        attn_output_a = attention(q[:, :-185].contiguous(), k[:, :-185].contiguous(), v[:, :-185].contiguous())
        attn_output_b = attention(q[:, -185:].contiguous(), k[:, -185:].contiguous(), v[:, -185:].contiguous())
        attn_output = torch.concat([attn_output_a, attn_output_b], dim=1)

        output = self.linear2(torch.cat((attn_output, self.mlp_act(mlp)), 2))
        return x + output * mod_gate.unsqueeze(1)


class MMSingleStreamBlock(torch.nn.Module):
    def __init__(self, hidden_size=3072, heads_num=24, mlp_width_ratio=4):
        super().__init__()
        self.heads_num = heads_num

        self.mod = ModulateDiT(hidden_size, factor=3)
        self.norm = torch.nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)

        self.to_qkv = torch.nn.Linear(hidden_size, hidden_size * 3)
        self.norm_q = RMSNorm(dim=hidden_size // heads_num, eps=1e-6)
        self.norm_k = RMSNorm(dim=hidden_size // heads_num, eps=1e-6)
        self.to_out = torch.nn.Linear(hidden_size, hidden_size)

        self.ff = torch.nn.Sequential(
            torch.nn.Linear(hidden_size, hidden_size * mlp_width_ratio),
            torch.nn.GELU(approximate="tanh"),
            torch.nn.Linear(hidden_size * mlp_width_ratio, hidden_size, bias=False)
        )

    def forward(self, hidden_states, conditioning, freqs_cis=None, txt_len=256, token_replace_vec=None, tr_token=None, split_token=71):
        mod_shift, mod_scale, mod_gate = self.mod(conditioning).chunk(3, dim=-1)
        if token_replace_vec is not None:
            assert tr_token is not None
            tr_mod_shift, tr_mod_scale, tr_mod_gate = self.mod(token_replace_vec).chunk(3, dim=-1)
        else:
            tr_mod_shift, tr_mod_scale, tr_mod_gate = None, None, None

        norm_hidden_states = self.norm(hidden_states)
        norm_hidden_states = modulate(norm_hidden_states, shift=mod_shift, scale=mod_scale,
                                      tr_shift=tr_mod_shift, tr_scale=tr_mod_scale, tr_token=tr_token)
        qkv = self.to_qkv(norm_hidden_states)

        q, k, v = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num)

        q = self.norm_q(q)
        k = self.norm_k(k)

        q_a, q_b = q[:, :-txt_len, :, :], q[:, -txt_len:, :, :]
        k_a, k_b = k[:, :-txt_len, :, :], k[:, -txt_len:, :, :]
        q_a, k_a = apply_rotary_emb(q_a, k_a, freqs_cis, head_first=False)

        v_len = txt_len - split_token
        q_a, q_b = torch.concat([q_a, q_b[:, :split_token]], dim=1), q_b[:, split_token:].contiguous()
        k_a, k_b = torch.concat([k_a, k_b[:, :split_token]], dim=1), k_b[:, split_token:].contiguous()
        v_a, v_b = v[:, :-v_len].contiguous(), v[:, -v_len:].contiguous()

        attn_output_a = attention(q_a, k_a, v_a)
        attn_output_b = attention(q_b, k_b, v_b)
        attn_output = torch.concat([attn_output_a, attn_output_b], dim=1)

        hidden_states = hidden_states + apply_gate(self.to_out(attn_output), mod_gate, tr_mod_gate, tr_token)
        hidden_states = hidden_states + apply_gate(self.ff(norm_hidden_states), mod_gate, tr_mod_gate, tr_token)
        return hidden_states


class FinalLayer(torch.nn.Module):
    def __init__(self, hidden_size=3072, patch_size=(1, 2, 2), out_channels=16):
        super().__init__()

        self.norm_final = torch.nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.linear = torch.nn.Linear(hidden_size, patch_size[0] * patch_size[1] * patch_size[2] * out_channels)

        self.adaLN_modulation = torch.nn.Sequential(torch.nn.SiLU(), torch.nn.Linear(hidden_size, 2 * hidden_size))

    def forward(self, x, c):
        shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
        x = modulate(self.norm_final(x), shift=shift, scale=scale)
        x = self.linear(x)
        return x


class HunyuanVideoDiT(torch.nn.Module):
    def __init__(self, in_channels=16, hidden_size=3072, text_dim=4096, num_double_blocks=20, num_single_blocks=40, guidance_embed=True):
        super().__init__()
        self.img_in = PatchEmbed(in_channels=in_channels, embed_dim=hidden_size)
        self.txt_in = SingleTokenRefiner(in_channels=text_dim, hidden_size=hidden_size)
        self.time_in = TimestepEmbeddings(256, hidden_size, computation_device="cpu")
        self.vector_in = torch.nn.Sequential(
            torch.nn.Linear(768, hidden_size),
            torch.nn.SiLU(),
            torch.nn.Linear(hidden_size, hidden_size)
        )
        self.guidance_in = TimestepEmbeddings(256, hidden_size, computation_device="cpu") if guidance_embed else None
        self.double_blocks = torch.nn.ModuleList([MMDoubleStreamBlock(hidden_size) for _ in range(num_double_blocks)])
        self.single_blocks = torch.nn.ModuleList([MMSingleStreamBlock(hidden_size) for _ in range(num_single_blocks)])
        self.final_layer = FinalLayer(hidden_size)

        # TODO: remove these parameters
        self.dtype = torch.bfloat16
        self.patch_size = [1, 2, 2]
        self.hidden_size = 3072
        self.heads_num = 24
        self.rope_dim_list = [16, 56, 56]

    def unpatchify(self, x, T, H, W):
        x = rearrange(x, "B (T H W) (C pT pH pW) -> B C (T pT) (H pH) (W pW)", H=H, W=W, pT=1, pH=2, pW=2)
        return x

    def enable_block_wise_offload(self, warm_device="cuda", cold_device="cpu"):
        self.warm_device = warm_device
        self.cold_device = cold_device
        self.to(self.cold_device)

    def load_models_to_device(self, loadmodel_names=[], device="cpu"):
        for model_name in loadmodel_names:
            model = getattr(self, model_name)
            if model is not None:
                model.to(device)
        torch.cuda.empty_cache()

    def prepare_freqs(self, latents):
        return HunyuanVideoRope(latents)

    def forward(
        self,
        x: torch.Tensor,
        t: torch.Tensor,
        prompt_emb: torch.Tensor = None,
        text_mask: torch.Tensor = None,
        pooled_prompt_emb: torch.Tensor = None,
        freqs_cos: torch.Tensor = None,
        freqs_sin: torch.Tensor = None,
        guidance: torch.Tensor = None,
        **kwargs
    ):
        B, C, T, H, W = x.shape

        vec = self.time_in(t, dtype=torch.float32) + self.vector_in(pooled_prompt_emb)
        if self.guidance_in is not None:
            vec += self.guidance_in(guidance * 1000, dtype=torch.float32)
        img = self.img_in(x)
        txt = self.txt_in(prompt_emb, t, text_mask)

        for block in tqdm(self.double_blocks, desc="Double stream blocks"):
            img, txt = block(img, txt, vec, (freqs_cos, freqs_sin))

        x = torch.concat([img, txt], dim=1)
        for block in tqdm(self.single_blocks, desc="Single stream blocks"):
            x = block(x, vec, (freqs_cos, freqs_sin))

        img = x[:, :-256]
        img = self.final_layer(img, vec)
        img = self.unpatchify(img, T=T//1, H=H//2, W=W//2)
        return img


    def enable_auto_offload(self, dtype=torch.bfloat16, device="cuda"):
        def cast_to(weight, dtype=None, device=None, copy=False):
            if device is None or weight.device == device:
                if not copy:
                    if dtype is None or weight.dtype == dtype:
                        return weight
                return weight.to(dtype=dtype, copy=copy)

            r = torch.empty_like(weight, dtype=dtype, device=device)
            r.copy_(weight)
            return r

        def cast_weight(s, input=None, dtype=None, device=None):
            if input is not None:
                if dtype is None:
                    dtype = input.dtype
                if device is None:
                    device = input.device
            weight = cast_to(s.weight, dtype, device)
            return weight

        def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None):
            if input is not None:
                if dtype is None:
                    dtype = input.dtype
                if bias_dtype is None:
                    bias_dtype = dtype
                if device is None:
                    device = input.device
            weight = cast_to(s.weight, dtype, device)
            bias = cast_to(s.bias, bias_dtype, device) if s.bias is not None else None
            return weight, bias

        class quantized_layer:
            class Linear(torch.nn.Linear):
                def __init__(self, *args, dtype=torch.bfloat16, device="cuda", **kwargs):
                    super().__init__(*args, **kwargs)
                    self.dtype = dtype
                    self.device = device

                def block_forward_(self, x, i, j, dtype, device):
                    weight_ = cast_to(
                        self.weight[j * self.block_size: (j + 1) * self.block_size, i * self.block_size: (i + 1) * self.block_size],
                        dtype=dtype, device=device
                    )
                    if self.bias is None or i > 0:
                        bias_ = None
                    else:
                        bias_ = cast_to(self.bias[j * self.block_size: (j + 1) * self.block_size], dtype=dtype, device=device)
                    x_ = x[..., i * self.block_size: (i + 1) * self.block_size]
                    y_ = torch.nn.functional.linear(x_, weight_, bias_)
                    del x_, weight_, bias_
                    torch.cuda.empty_cache()
                    return y_

                def block_forward(self, x, **kwargs):
                    # This feature can only reduce 2GB VRAM, so we disable it.
                    y = torch.zeros(x.shape[:-1] + (self.out_features,), dtype=x.dtype, device=x.device)
                    for i in range((self.in_features + self.block_size - 1) // self.block_size):
                        for j in range((self.out_features + self.block_size - 1) // self.block_size):
                            y[..., j * self.block_size: (j + 1) * self.block_size] += self.block_forward_(x, i, j, dtype=x.dtype, device=x.device)
                    return y

                def forward(self, x, **kwargs):
                    weight, bias = cast_bias_weight(self, x, dtype=self.dtype, device=self.device)
                    return torch.nn.functional.linear(x, weight, bias)


            class RMSNorm(torch.nn.Module):
                def __init__(self, module, dtype=torch.bfloat16, device="cuda"):
                    super().__init__()
                    self.module = module
                    self.dtype = dtype
                    self.device = device

                def forward(self, hidden_states, **kwargs):
                    input_dtype = hidden_states.dtype
                    variance = hidden_states.to(torch.float32).square().mean(-1, keepdim=True)
                    hidden_states = hidden_states * torch.rsqrt(variance + self.module.eps)
                    hidden_states = hidden_states.to(input_dtype)
                    if self.module.weight is not None:
                        weight = cast_weight(self.module, hidden_states, dtype=torch.bfloat16, device="cuda")
                        hidden_states = hidden_states * weight
                    return hidden_states

            class Conv3d(torch.nn.Conv3d):
                def __init__(self, *args, dtype=torch.bfloat16, device="cuda", **kwargs):
                    super().__init__(*args, **kwargs)
                    self.dtype = dtype
                    self.device = device

                def forward(self, x):
                    weight, bias = cast_bias_weight(self, x, dtype=self.dtype, device=self.device)
                    return torch.nn.functional.conv3d(x, weight, bias, self.stride, self.padding, self.dilation, self.groups)

            class LayerNorm(torch.nn.LayerNorm):
                def __init__(self, *args, dtype=torch.bfloat16, device="cuda", **kwargs):
                    super().__init__(*args, **kwargs)
                    self.dtype = dtype
                    self.device = device

                def forward(self, x):
                    if self.weight is not None and self.bias is not None:
                        weight, bias = cast_bias_weight(self, x, dtype=self.dtype, device=self.device)
                        return torch.nn.functional.layer_norm(x, self.normalized_shape, weight, bias, self.eps)
                    else:
                        return torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)

        def replace_layer(model, dtype=torch.bfloat16, device="cuda"):
            for name, module in model.named_children():
                if isinstance(module, torch.nn.Linear):
                    with init_weights_on_device():
                        new_layer = quantized_layer.Linear(
                            module.in_features, module.out_features, bias=module.bias is not None,
                            dtype=dtype, device=device
                        )
                    new_layer.load_state_dict(module.state_dict(), assign=True)
                    setattr(model, name, new_layer)
                elif isinstance(module, torch.nn.Conv3d):
                    with init_weights_on_device():
                        new_layer = quantized_layer.Conv3d(
                            module.in_channels, module.out_channels, kernel_size=module.kernel_size, stride=module.stride,
                            dtype=dtype, device=device
                        )
                    new_layer.load_state_dict(module.state_dict(), assign=True)
                    setattr(model, name, new_layer)
                elif isinstance(module, RMSNorm):
                    new_layer = quantized_layer.RMSNorm(
                        module,
                        dtype=dtype, device=device
                    )
                    setattr(model, name, new_layer)
                elif isinstance(module, torch.nn.LayerNorm):
                    with init_weights_on_device():
                        new_layer = quantized_layer.LayerNorm(
                            module.normalized_shape, elementwise_affine=module.elementwise_affine, eps=module.eps,
                            dtype=dtype, device=device
                        )
                    new_layer.load_state_dict(module.state_dict(), assign=True)
                    setattr(model, name, new_layer)
                else:
                    replace_layer(module, dtype=dtype, device=device)

        replace_layer(self, dtype=dtype, device=device)

    @staticmethod
    def state_dict_converter():
        return HunyuanVideoDiTStateDictConverter()


class HunyuanVideoDiTStateDictConverter:
    def __init__(self):
        pass

    def from_civitai(self, state_dict):
        origin_hash_key = hash_state_dict_keys(state_dict, with_shape=True)
        if "module" in state_dict:
            state_dict = state_dict["module"]
        direct_dict = {
            "img_in.proj": "img_in.proj",
            "time_in.mlp.0": "time_in.timestep_embedder.0",
            "time_in.mlp.2": "time_in.timestep_embedder.2",
            "vector_in.in_layer": "vector_in.0",
            "vector_in.out_layer": "vector_in.2",
            "guidance_in.mlp.0": "guidance_in.timestep_embedder.0",
            "guidance_in.mlp.2": "guidance_in.timestep_embedder.2",
            "txt_in.input_embedder": "txt_in.input_embedder",
            "txt_in.t_embedder.mlp.0": "txt_in.t_embedder.timestep_embedder.0",
            "txt_in.t_embedder.mlp.2": "txt_in.t_embedder.timestep_embedder.2",
            "txt_in.c_embedder.linear_1": "txt_in.c_embedder.0",
            "txt_in.c_embedder.linear_2": "txt_in.c_embedder.2",
            "final_layer.linear": "final_layer.linear",
            "final_layer.adaLN_modulation.1": "final_layer.adaLN_modulation.1",
        }
        txt_suffix_dict = {
            "norm1": "norm1",
            "self_attn_qkv": "self_attn_qkv",
            "self_attn_proj": "self_attn_proj",
            "norm2": "norm2",
            "mlp.fc1": "mlp.0",
            "mlp.fc2": "mlp.2",
            "adaLN_modulation.1": "adaLN_modulation.1",
        }
        double_suffix_dict = {
            "img_mod.linear": "component_a.mod.linear",
            "img_attn_qkv": "component_a.to_qkv",
            "img_attn_q_norm": "component_a.norm_q",
            "img_attn_k_norm": "component_a.norm_k",
            "img_attn_proj": "component_a.to_out",
            "img_mlp.fc1": "component_a.ff.0",
            "img_mlp.fc2": "component_a.ff.2",
            "txt_mod.linear": "component_b.mod.linear",
            "txt_attn_qkv": "component_b.to_qkv",
            "txt_attn_q_norm": "component_b.norm_q",
            "txt_attn_k_norm": "component_b.norm_k",
            "txt_attn_proj": "component_b.to_out",
            "txt_mlp.fc1": "component_b.ff.0",
            "txt_mlp.fc2": "component_b.ff.2",
        }
        single_suffix_dict = {
            "linear1": ["to_qkv", "ff.0"],
            "linear2": ["to_out", "ff.2"],
            "q_norm": "norm_q",
            "k_norm": "norm_k",
            "modulation.linear": "mod.linear",
        }
        # single_suffix_dict = {
        #     "linear1": "linear1",
        #     "linear2": "linear2",
        #     "q_norm": "q_norm",
        #     "k_norm": "k_norm",
        #     "modulation.linear": "modulation.linear",
        # }
        state_dict_ = {}
        for name, param in state_dict.items():
            names = name.split(".")
            direct_name = ".".join(names[:-1])
            if direct_name in direct_dict:
                name_ = direct_dict[direct_name] + "." + names[-1]
                state_dict_[name_] = param
            elif names[0] == "double_blocks":
                prefix = ".".join(names[:2])
                suffix = ".".join(names[2:-1])
                name_ = prefix + "." + double_suffix_dict[suffix] + "." + names[-1]
                state_dict_[name_] = param
            elif names[0] == "single_blocks":
                prefix = ".".join(names[:2])
                suffix = ".".join(names[2:-1])
                if isinstance(single_suffix_dict[suffix], list):
                    if suffix == "linear1":
                        name_a, name_b = single_suffix_dict[suffix]
                        param_a, param_b = torch.split(param, (3072*3, 3072*4), dim=0)
                        state_dict_[prefix + "." + name_a + "." + names[-1]] = param_a
                        state_dict_[prefix + "." + name_b + "." + names[-1]] = param_b
                    elif suffix == "linear2":
                        if names[-1] == "weight":
                            name_a, name_b = single_suffix_dict[suffix]
                            param_a, param_b = torch.split(param, (3072*1, 3072*4), dim=-1)
                            state_dict_[prefix + "." + name_a + "." + names[-1]] = param_a
                            state_dict_[prefix + "." + name_b + "." + names[-1]] = param_b
                        else:
                            name_a, name_b = single_suffix_dict[suffix]
                            state_dict_[prefix + "." + name_a + "." + names[-1]] = param
                    else:
                        pass
                else:
                    name_ = prefix + "." + single_suffix_dict[suffix] + "." + names[-1]
                    state_dict_[name_] = param
            elif names[0] == "txt_in":
                prefix = ".".join(names[:4]).replace(".individual_token_refiner.", ".")
                suffix = ".".join(names[4:-1])
                name_ = prefix + "." + txt_suffix_dict[suffix] + "." + names[-1]
                state_dict_[name_] = param
            else:
                pass

        return state_dict_