Spaces:
Running
on
L40S
Running
on
L40S
File size: 19,320 Bytes
4bf9661 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
import numpy as np
from tqdm import tqdm
from einops import repeat
class CausalConv3d(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, stride=1, dilation=1, pad_mode='replicate', **kwargs):
super().__init__()
self.pad_mode = pad_mode
self.time_causal_padding = (kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size - 1, 0
) # W, H, T
self.conv = nn.Conv3d(in_channel, out_channel, kernel_size, stride=stride, dilation=dilation, **kwargs)
def forward(self, x):
x = F.pad(x, self.time_causal_padding, mode=self.pad_mode)
return self.conv(x)
class UpsampleCausal3D(nn.Module):
def __init__(self, channels, use_conv=False, out_channels=None, kernel_size=None, bias=True, upsample_factor=(2, 2, 2)):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.upsample_factor = upsample_factor
self.conv = None
if use_conv:
kernel_size = 3 if kernel_size is None else kernel_size
self.conv = CausalConv3d(self.channels, self.out_channels, kernel_size=kernel_size, bias=bias)
def forward(self, hidden_states):
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
dtype = hidden_states.dtype
if dtype == torch.bfloat16:
hidden_states = hidden_states.to(torch.float32)
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
if hidden_states.shape[0] >= 64:
hidden_states = hidden_states.contiguous()
# interpolate
B, C, T, H, W = hidden_states.shape
first_h, other_h = hidden_states.split((1, T - 1), dim=2)
if T > 1:
other_h = F.interpolate(other_h, scale_factor=self.upsample_factor, mode="nearest")
first_h = F.interpolate(first_h.squeeze(2), scale_factor=self.upsample_factor[1:], mode="nearest").unsqueeze(2)
hidden_states = torch.cat((first_h, other_h), dim=2) if T > 1 else first_h
# If the input is bfloat16, we cast back to bfloat16
if dtype == torch.bfloat16:
hidden_states = hidden_states.to(dtype)
if self.conv:
hidden_states = self.conv(hidden_states)
return hidden_states
class ResnetBlockCausal3D(nn.Module):
def __init__(self, in_channels, out_channels=None, dropout=0.0, groups=32, eps=1e-6, conv_shortcut_bias=True):
super().__init__()
self.pre_norm = True
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.norm1 = nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
self.conv1 = CausalConv3d(in_channels, out_channels, kernel_size=3, stride=1)
self.norm2 = nn.GroupNorm(num_groups=groups, num_channels=out_channels, eps=eps, affine=True)
self.conv2 = CausalConv3d(out_channels, out_channels, kernel_size=3, stride=1)
self.dropout = nn.Dropout(dropout)
self.nonlinearity = nn.SiLU()
self.conv_shortcut = None
if in_channels != out_channels:
self.conv_shortcut = CausalConv3d(in_channels, out_channels, kernel_size=1, stride=1, bias=conv_shortcut_bias)
def forward(self, input_tensor):
hidden_states = input_tensor
# conv1
hidden_states = self.norm1(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.conv1(hidden_states)
# conv2
hidden_states = self.norm2(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.conv2(hidden_states)
# shortcut
if self.conv_shortcut is not None:
input_tensor = (self.conv_shortcut(input_tensor))
# shortcut and scale
output_tensor = input_tensor + hidden_states
return output_tensor
def prepare_causal_attention_mask(n_frame, n_hw, dtype, device, batch_size=None):
seq_len = n_frame * n_hw
mask = torch.full((seq_len, seq_len), float("-inf"), dtype=dtype, device=device)
for i in range(seq_len):
i_frame = i // n_hw
mask[i, :(i_frame + 1) * n_hw] = 0
if batch_size is not None:
mask = mask.unsqueeze(0).expand(batch_size, -1, -1)
return mask
class Attention(nn.Module):
def __init__(self,
in_channels,
num_heads,
head_dim,
num_groups=32,
dropout=0.0,
eps=1e-6,
bias=True,
residual_connection=True):
super().__init__()
self.num_heads = num_heads
self.head_dim = head_dim
self.residual_connection = residual_connection
dim_inner = head_dim * num_heads
self.group_norm = nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=eps, affine=True)
self.to_q = nn.Linear(in_channels, dim_inner, bias=bias)
self.to_k = nn.Linear(in_channels, dim_inner, bias=bias)
self.to_v = nn.Linear(in_channels, dim_inner, bias=bias)
self.to_out = nn.Sequential(nn.Linear(dim_inner, in_channels, bias=bias), nn.Dropout(dropout))
def forward(self, input_tensor, attn_mask=None):
hidden_states = self.group_norm(input_tensor.transpose(1, 2)).transpose(1, 2)
batch_size = hidden_states.shape[0]
q = self.to_q(hidden_states)
k = self.to_k(hidden_states)
v = self.to_v(hidden_states)
q = q.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
k = k.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
v = v.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
if attn_mask is not None:
attn_mask = attn_mask.view(batch_size, self.num_heads, -1, attn_mask.shape[-1])
hidden_states = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_dim)
hidden_states = self.to_out(hidden_states)
if self.residual_connection:
output_tensor = input_tensor + hidden_states
return output_tensor
class UNetMidBlockCausal3D(nn.Module):
def __init__(self, in_channels, dropout=0.0, num_layers=1, eps=1e-6, num_groups=32, attention_head_dim=None):
super().__init__()
resnets = [
ResnetBlockCausal3D(
in_channels=in_channels,
out_channels=in_channels,
dropout=dropout,
groups=num_groups,
eps=eps,
)
]
attentions = []
attention_head_dim = attention_head_dim or in_channels
for _ in range(num_layers):
attentions.append(
Attention(
in_channels,
num_heads=in_channels // attention_head_dim,
head_dim=attention_head_dim,
num_groups=num_groups,
dropout=dropout,
eps=eps,
bias=True,
residual_connection=True,
))
resnets.append(
ResnetBlockCausal3D(
in_channels=in_channels,
out_channels=in_channels,
dropout=dropout,
groups=num_groups,
eps=eps,
))
self.attentions = nn.ModuleList(attentions)
self.resnets = nn.ModuleList(resnets)
def forward(self, hidden_states):
hidden_states = self.resnets[0](hidden_states)
for attn, resnet in zip(self.attentions, self.resnets[1:]):
B, C, T, H, W = hidden_states.shape
hidden_states = rearrange(hidden_states, "b c f h w -> b (f h w) c")
attn_mask = prepare_causal_attention_mask(T, H * W, hidden_states.dtype, hidden_states.device, batch_size=B)
hidden_states = attn(hidden_states, attn_mask=attn_mask)
hidden_states = rearrange(hidden_states, "b (f h w) c -> b c f h w", f=T, h=H, w=W)
hidden_states = resnet(hidden_states)
return hidden_states
class UpDecoderBlockCausal3D(nn.Module):
def __init__(
self,
in_channels,
out_channels,
dropout=0.0,
num_layers=1,
eps=1e-6,
num_groups=32,
add_upsample=True,
upsample_scale_factor=(2, 2, 2),
):
super().__init__()
resnets = []
for i in range(num_layers):
cur_in_channel = in_channels if i == 0 else out_channels
resnets.append(
ResnetBlockCausal3D(
in_channels=cur_in_channel,
out_channels=out_channels,
groups=num_groups,
dropout=dropout,
eps=eps,
))
self.resnets = nn.ModuleList(resnets)
self.upsamplers = None
if add_upsample:
self.upsamplers = nn.ModuleList([
UpsampleCausal3D(
out_channels,
use_conv=True,
out_channels=out_channels,
upsample_factor=upsample_scale_factor,
)
])
def forward(self, hidden_states):
for resnet in self.resnets:
hidden_states = resnet(hidden_states)
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states)
return hidden_states
class DecoderCausal3D(nn.Module):
def __init__(
self,
in_channels=16,
out_channels=3,
eps=1e-6,
dropout=0.0,
block_out_channels=[128, 256, 512, 512],
layers_per_block=2,
num_groups=32,
time_compression_ratio=4,
spatial_compression_ratio=8,
gradient_checkpointing=False,
):
super().__init__()
self.layers_per_block = layers_per_block
self.conv_in = CausalConv3d(in_channels, block_out_channels[-1], kernel_size=3, stride=1)
self.up_blocks = nn.ModuleList([])
# mid
self.mid_block = UNetMidBlockCausal3D(
in_channels=block_out_channels[-1],
dropout=dropout,
eps=eps,
num_groups=num_groups,
attention_head_dim=block_out_channels[-1],
)
# up
reversed_block_out_channels = list(reversed(block_out_channels))
output_channel = reversed_block_out_channels[0]
for i in range(len(block_out_channels)):
prev_output_channel = output_channel
output_channel = reversed_block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
num_spatial_upsample_layers = int(np.log2(spatial_compression_ratio))
num_time_upsample_layers = int(np.log2(time_compression_ratio))
add_spatial_upsample = bool(i < num_spatial_upsample_layers)
add_time_upsample = bool(i >= len(block_out_channels) - 1 - num_time_upsample_layers and not is_final_block)
upsample_scale_factor_HW = (2, 2) if add_spatial_upsample else (1, 1)
upsample_scale_factor_T = (2,) if add_time_upsample else (1,)
upsample_scale_factor = tuple(upsample_scale_factor_T + upsample_scale_factor_HW)
up_block = UpDecoderBlockCausal3D(
in_channels=prev_output_channel,
out_channels=output_channel,
dropout=dropout,
num_layers=layers_per_block + 1,
eps=eps,
num_groups=num_groups,
add_upsample=bool(add_spatial_upsample or add_time_upsample),
upsample_scale_factor=upsample_scale_factor,
)
self.up_blocks.append(up_block)
prev_output_channel = output_channel
# out
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=num_groups, eps=eps)
self.conv_act = nn.SiLU()
self.conv_out = CausalConv3d(block_out_channels[0], out_channels, kernel_size=3)
self.gradient_checkpointing = gradient_checkpointing
def forward(self, hidden_states):
hidden_states = self.conv_in(hidden_states)
if self.training and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
# middle
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block),
hidden_states,
use_reentrant=False,
)
# up
for up_block in self.up_blocks:
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(up_block),
hidden_states,
use_reentrant=False,
)
else:
# middle
hidden_states = self.mid_block(hidden_states)
# up
for up_block in self.up_blocks:
hidden_states = up_block(hidden_states)
# post-process
hidden_states = self.conv_norm_out(hidden_states)
hidden_states = self.conv_act(hidden_states)
hidden_states = self.conv_out(hidden_states)
return hidden_states
class HunyuanVideoVAEDecoder(nn.Module):
def __init__(
self,
in_channels=16,
out_channels=3,
eps=1e-6,
dropout=0.0,
block_out_channels=[128, 256, 512, 512],
layers_per_block=2,
num_groups=32,
time_compression_ratio=4,
spatial_compression_ratio=8,
gradient_checkpointing=False,
):
super().__init__()
self.decoder = DecoderCausal3D(
in_channels=in_channels,
out_channels=out_channels,
eps=eps,
dropout=dropout,
block_out_channels=block_out_channels,
layers_per_block=layers_per_block,
num_groups=num_groups,
time_compression_ratio=time_compression_ratio,
spatial_compression_ratio=spatial_compression_ratio,
gradient_checkpointing=gradient_checkpointing,
)
self.post_quant_conv = nn.Conv3d(in_channels, in_channels, kernel_size=1)
self.scaling_factor = 0.476986
def forward(self, latents):
latents = latents / self.scaling_factor
latents = self.post_quant_conv(latents)
dec = self.decoder(latents)
return dec
def build_1d_mask(self, length, left_bound, right_bound, border_width):
x = torch.ones((length,))
if not left_bound:
x[:border_width] = (torch.arange(border_width) + 1) / border_width
if not right_bound:
x[-border_width:] = torch.flip((torch.arange(border_width) + 1) / border_width, dims=(0,))
return x
def build_mask(self, data, is_bound, border_width):
_, _, T, H, W = data.shape
t = self.build_1d_mask(T, is_bound[0], is_bound[1], border_width[0])
h = self.build_1d_mask(H, is_bound[2], is_bound[3], border_width[1])
w = self.build_1d_mask(W, is_bound[4], is_bound[5], border_width[2])
t = repeat(t, "T -> T H W", T=T, H=H, W=W)
h = repeat(h, "H -> T H W", T=T, H=H, W=W)
w = repeat(w, "W -> T H W", T=T, H=H, W=W)
mask = torch.stack([t, h, w]).min(dim=0).values
mask = rearrange(mask, "T H W -> 1 1 T H W")
return mask
def tile_forward(self, hidden_states, tile_size, tile_stride):
B, C, T, H, W = hidden_states.shape
size_t, size_h, size_w = tile_size
stride_t, stride_h, stride_w = tile_stride
# Split tasks
tasks = []
for t in range(0, T, stride_t):
if (t-stride_t >= 0 and t-stride_t+size_t >= T): continue
for h in range(0, H, stride_h):
if (h-stride_h >= 0 and h-stride_h+size_h >= H): continue
for w in range(0, W, stride_w):
if (w-stride_w >= 0 and w-stride_w+size_w >= W): continue
t_, h_, w_ = t + size_t, h + size_h, w + size_w
tasks.append((t, t_, h, h_, w, w_))
# Run
torch_dtype = self.post_quant_conv.weight.dtype
data_device = hidden_states.device
computation_device = self.post_quant_conv.weight.device
weight = torch.zeros((1, 1, (T - 1) * 4 + 1, H * 8, W * 8), dtype=torch_dtype, device=data_device)
values = torch.zeros((B, 3, (T - 1) * 4 + 1, H * 8, W * 8), dtype=torch_dtype, device=data_device)
for t, t_, h, h_, w, w_ in tqdm(tasks, desc="VAE decoding"):
hidden_states_batch = hidden_states[:, :, t:t_, h:h_, w:w_].to(computation_device)
hidden_states_batch = self.forward(hidden_states_batch).to(data_device)
if t > 0:
hidden_states_batch = hidden_states_batch[:, :, 1:]
mask = self.build_mask(
hidden_states_batch,
is_bound=(t==0, t_>=T, h==0, h_>=H, w==0, w_>=W),
border_width=((size_t - stride_t) * 4, (size_h - stride_h) * 8, (size_w - stride_w) * 8)
).to(dtype=torch_dtype, device=data_device)
target_t = 0 if t==0 else t * 4 + 1
target_h = h * 8
target_w = w * 8
values[
:,
:,
target_t: target_t + hidden_states_batch.shape[2],
target_h: target_h + hidden_states_batch.shape[3],
target_w: target_w + hidden_states_batch.shape[4],
] += hidden_states_batch * mask
weight[
:,
:,
target_t: target_t + hidden_states_batch.shape[2],
target_h: target_h + hidden_states_batch.shape[3],
target_w: target_w + hidden_states_batch.shape[4],
] += mask
return values / weight
def decode_video(self, latents, tile_size=(17, 32, 32), tile_stride=(12, 24, 24)):
latents = latents.to(self.post_quant_conv.weight.dtype)
return self.tile_forward(latents, tile_size=tile_size, tile_stride=tile_stride)
@staticmethod
def state_dict_converter():
return HunyuanVideoVAEDecoderStateDictConverter()
class HunyuanVideoVAEDecoderStateDictConverter:
def __init__(self):
pass
def from_diffusers(self, state_dict):
state_dict_ = {}
for name in state_dict:
if name.startswith('decoder.') or name.startswith('post_quant_conv.'):
state_dict_[name] = state_dict[name]
return state_dict_
|