File size: 19,320 Bytes
4bf9661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
import numpy as np
from tqdm import tqdm
from einops import repeat


class CausalConv3d(nn.Module):

    def __init__(self, in_channel, out_channel, kernel_size, stride=1, dilation=1, pad_mode='replicate', **kwargs):
        super().__init__()
        self.pad_mode = pad_mode
        self.time_causal_padding = (kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size - 1, 0
                                   )  # W, H, T
        self.conv = nn.Conv3d(in_channel, out_channel, kernel_size, stride=stride, dilation=dilation, **kwargs)

    def forward(self, x):
        x = F.pad(x, self.time_causal_padding, mode=self.pad_mode)
        return self.conv(x)


class UpsampleCausal3D(nn.Module):

    def __init__(self, channels, use_conv=False, out_channels=None, kernel_size=None, bias=True, upsample_factor=(2, 2, 2)):
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.upsample_factor = upsample_factor
        self.conv = None
        if use_conv:
            kernel_size = 3 if kernel_size is None else kernel_size
            self.conv = CausalConv3d(self.channels, self.out_channels, kernel_size=kernel_size, bias=bias)

    def forward(self, hidden_states):
        # Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
        dtype = hidden_states.dtype
        if dtype == torch.bfloat16:
            hidden_states = hidden_states.to(torch.float32)

        # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
        if hidden_states.shape[0] >= 64:
            hidden_states = hidden_states.contiguous()

        # interpolate
        B, C, T, H, W = hidden_states.shape
        first_h, other_h = hidden_states.split((1, T - 1), dim=2)
        if T > 1:
            other_h = F.interpolate(other_h, scale_factor=self.upsample_factor, mode="nearest")
        first_h = F.interpolate(first_h.squeeze(2), scale_factor=self.upsample_factor[1:], mode="nearest").unsqueeze(2)
        hidden_states = torch.cat((first_h, other_h), dim=2) if T > 1 else first_h

        # If the input is bfloat16, we cast back to bfloat16
        if dtype == torch.bfloat16:
            hidden_states = hidden_states.to(dtype)

        if self.conv:
            hidden_states = self.conv(hidden_states)

        return hidden_states


class ResnetBlockCausal3D(nn.Module):

    def __init__(self, in_channels, out_channels=None, dropout=0.0, groups=32, eps=1e-6, conv_shortcut_bias=True):
        super().__init__()
        self.pre_norm = True
        self.in_channels = in_channels
        out_channels = in_channels if out_channels is None else out_channels
        self.out_channels = out_channels

        self.norm1 = nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
        self.conv1 = CausalConv3d(in_channels, out_channels, kernel_size=3, stride=1)

        self.norm2 = nn.GroupNorm(num_groups=groups, num_channels=out_channels, eps=eps, affine=True)
        self.conv2 = CausalConv3d(out_channels, out_channels, kernel_size=3, stride=1)

        self.dropout = nn.Dropout(dropout)
        self.nonlinearity = nn.SiLU()

        self.conv_shortcut = None
        if in_channels != out_channels:
            self.conv_shortcut = CausalConv3d(in_channels, out_channels, kernel_size=1, stride=1, bias=conv_shortcut_bias)

    def forward(self, input_tensor):
        hidden_states = input_tensor
        # conv1
        hidden_states = self.norm1(hidden_states)
        hidden_states = self.nonlinearity(hidden_states)
        hidden_states = self.conv1(hidden_states)

        # conv2
        hidden_states = self.norm2(hidden_states)
        hidden_states = self.nonlinearity(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.conv2(hidden_states)
        # shortcut
        if self.conv_shortcut is not None:
            input_tensor = (self.conv_shortcut(input_tensor))
        # shortcut and scale
        output_tensor = input_tensor + hidden_states

        return output_tensor


def prepare_causal_attention_mask(n_frame, n_hw, dtype, device, batch_size=None):
    seq_len = n_frame * n_hw
    mask = torch.full((seq_len, seq_len), float("-inf"), dtype=dtype, device=device)
    for i in range(seq_len):
        i_frame = i // n_hw
        mask[i, :(i_frame + 1) * n_hw] = 0
    if batch_size is not None:
        mask = mask.unsqueeze(0).expand(batch_size, -1, -1)
    return mask


class Attention(nn.Module):

    def __init__(self,
                 in_channels,
                 num_heads,
                 head_dim,
                 num_groups=32,
                 dropout=0.0,
                 eps=1e-6,
                 bias=True,
                 residual_connection=True):
        super().__init__()
        self.num_heads = num_heads
        self.head_dim = head_dim
        self.residual_connection = residual_connection
        dim_inner = head_dim * num_heads
        self.group_norm = nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=eps, affine=True)
        self.to_q = nn.Linear(in_channels, dim_inner, bias=bias)
        self.to_k = nn.Linear(in_channels, dim_inner, bias=bias)
        self.to_v = nn.Linear(in_channels, dim_inner, bias=bias)
        self.to_out = nn.Sequential(nn.Linear(dim_inner, in_channels, bias=bias), nn.Dropout(dropout))

    def forward(self, input_tensor, attn_mask=None):
        hidden_states = self.group_norm(input_tensor.transpose(1, 2)).transpose(1, 2)
        batch_size = hidden_states.shape[0]

        q = self.to_q(hidden_states)
        k = self.to_k(hidden_states)
        v = self.to_v(hidden_states)

        q = q.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
        k = k.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
        v = v.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)

        if attn_mask is not None:
            attn_mask = attn_mask.view(batch_size, self.num_heads, -1, attn_mask.shape[-1])
        hidden_states = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask)
        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_dim)
        hidden_states = self.to_out(hidden_states)
        if self.residual_connection:
            output_tensor = input_tensor + hidden_states
        return output_tensor


class UNetMidBlockCausal3D(nn.Module):

    def __init__(self, in_channels, dropout=0.0, num_layers=1, eps=1e-6, num_groups=32, attention_head_dim=None):
        super().__init__()
        resnets = [
            ResnetBlockCausal3D(
                in_channels=in_channels,
                out_channels=in_channels,
                dropout=dropout,
                groups=num_groups,
                eps=eps,
            )
        ]
        attentions = []
        attention_head_dim = attention_head_dim or in_channels

        for _ in range(num_layers):
            attentions.append(
                Attention(
                    in_channels,
                    num_heads=in_channels // attention_head_dim,
                    head_dim=attention_head_dim,
                    num_groups=num_groups,
                    dropout=dropout,
                    eps=eps,
                    bias=True,
                    residual_connection=True,
                ))

            resnets.append(
                ResnetBlockCausal3D(
                    in_channels=in_channels,
                    out_channels=in_channels,
                    dropout=dropout,
                    groups=num_groups,
                    eps=eps,
                ))

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

    def forward(self, hidden_states):
        hidden_states = self.resnets[0](hidden_states)
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
            B, C, T, H, W = hidden_states.shape
            hidden_states = rearrange(hidden_states, "b c f h w -> b (f h w) c")
            attn_mask = prepare_causal_attention_mask(T, H * W, hidden_states.dtype, hidden_states.device, batch_size=B)
            hidden_states = attn(hidden_states, attn_mask=attn_mask)
            hidden_states = rearrange(hidden_states, "b (f h w) c -> b c f h w", f=T, h=H, w=W)
            hidden_states = resnet(hidden_states)

        return hidden_states


class UpDecoderBlockCausal3D(nn.Module):

    def __init__(
            self,
            in_channels,
            out_channels,
            dropout=0.0,
            num_layers=1,
            eps=1e-6,
            num_groups=32,
            add_upsample=True,
            upsample_scale_factor=(2, 2, 2),
    ):
        super().__init__()
        resnets = []
        for i in range(num_layers):
            cur_in_channel = in_channels if i == 0 else out_channels
            resnets.append(
                ResnetBlockCausal3D(
                    in_channels=cur_in_channel,
                    out_channels=out_channels,
                    groups=num_groups,
                    dropout=dropout,
                    eps=eps,
                ))
        self.resnets = nn.ModuleList(resnets)

        self.upsamplers = None
        if add_upsample:
            self.upsamplers = nn.ModuleList([
                UpsampleCausal3D(
                    out_channels,
                    use_conv=True,
                    out_channels=out_channels,
                    upsample_factor=upsample_scale_factor,
                )
            ])

    def forward(self, hidden_states):
        for resnet in self.resnets:
            hidden_states = resnet(hidden_states)
        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)
        return hidden_states


class DecoderCausal3D(nn.Module):

    def __init__(
        self,
        in_channels=16,
        out_channels=3,
        eps=1e-6,
        dropout=0.0,
        block_out_channels=[128, 256, 512, 512],
        layers_per_block=2,
        num_groups=32,
        time_compression_ratio=4,
        spatial_compression_ratio=8,
        gradient_checkpointing=False,
    ):
        super().__init__()
        self.layers_per_block = layers_per_block

        self.conv_in = CausalConv3d(in_channels, block_out_channels[-1], kernel_size=3, stride=1)
        self.up_blocks = nn.ModuleList([])

        # mid
        self.mid_block = UNetMidBlockCausal3D(
            in_channels=block_out_channels[-1],
            dropout=dropout,
            eps=eps,
            num_groups=num_groups,
            attention_head_dim=block_out_channels[-1],
        )

        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
        output_channel = reversed_block_out_channels[0]
        for i in range(len(block_out_channels)):
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1
            num_spatial_upsample_layers = int(np.log2(spatial_compression_ratio))
            num_time_upsample_layers = int(np.log2(time_compression_ratio))

            add_spatial_upsample = bool(i < num_spatial_upsample_layers)
            add_time_upsample = bool(i >= len(block_out_channels) - 1 - num_time_upsample_layers and not is_final_block)

            upsample_scale_factor_HW = (2, 2) if add_spatial_upsample else (1, 1)
            upsample_scale_factor_T = (2,) if add_time_upsample else (1,)
            upsample_scale_factor = tuple(upsample_scale_factor_T + upsample_scale_factor_HW)

            up_block = UpDecoderBlockCausal3D(
                in_channels=prev_output_channel,
                out_channels=output_channel,
                dropout=dropout,
                num_layers=layers_per_block + 1,
                eps=eps,
                num_groups=num_groups,
                add_upsample=bool(add_spatial_upsample or add_time_upsample),
                upsample_scale_factor=upsample_scale_factor,
            )

            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
        self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=num_groups, eps=eps)
        self.conv_act = nn.SiLU()
        self.conv_out = CausalConv3d(block_out_channels[0], out_channels, kernel_size=3)

        self.gradient_checkpointing = gradient_checkpointing

    def forward(self, hidden_states):
        hidden_states = self.conv_in(hidden_states)
        if self.training and self.gradient_checkpointing:

            def create_custom_forward(module):

                def custom_forward(*inputs):
                    return module(*inputs)

                return custom_forward

            # middle
            hidden_states = torch.utils.checkpoint.checkpoint(
                create_custom_forward(self.mid_block),
                hidden_states,
                use_reentrant=False,
            )
            # up
            for up_block in self.up_blocks:
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(up_block),
                    hidden_states,
                    use_reentrant=False,
                )
        else:
            # middle
            hidden_states = self.mid_block(hidden_states)
            # up
            for up_block in self.up_blocks:
                hidden_states = up_block(hidden_states)
        # post-process
        hidden_states = self.conv_norm_out(hidden_states)
        hidden_states = self.conv_act(hidden_states)
        hidden_states = self.conv_out(hidden_states)

        return hidden_states


class HunyuanVideoVAEDecoder(nn.Module):

    def __init__(
        self,
        in_channels=16,
        out_channels=3,
        eps=1e-6,
        dropout=0.0,
        block_out_channels=[128, 256, 512, 512],
        layers_per_block=2,
        num_groups=32,
        time_compression_ratio=4,
        spatial_compression_ratio=8,
        gradient_checkpointing=False,
    ):
        super().__init__()
        self.decoder = DecoderCausal3D(
            in_channels=in_channels,
            out_channels=out_channels,
            eps=eps,
            dropout=dropout,
            block_out_channels=block_out_channels,
            layers_per_block=layers_per_block,
            num_groups=num_groups,
            time_compression_ratio=time_compression_ratio,
            spatial_compression_ratio=spatial_compression_ratio,
            gradient_checkpointing=gradient_checkpointing,
        )
        self.post_quant_conv = nn.Conv3d(in_channels, in_channels, kernel_size=1)
        self.scaling_factor = 0.476986


    def forward(self, latents):
        latents = latents / self.scaling_factor
        latents = self.post_quant_conv(latents)
        dec = self.decoder(latents)
        return dec
    

    def build_1d_mask(self, length, left_bound, right_bound, border_width):
        x = torch.ones((length,))
        if not left_bound:
            x[:border_width] = (torch.arange(border_width) + 1) / border_width
        if not right_bound:
            x[-border_width:] = torch.flip((torch.arange(border_width) + 1) / border_width, dims=(0,))
        return x
    

    def build_mask(self, data, is_bound, border_width):
        _, _, T, H, W = data.shape
        t = self.build_1d_mask(T, is_bound[0], is_bound[1], border_width[0])
        h = self.build_1d_mask(H, is_bound[2], is_bound[3], border_width[1])
        w = self.build_1d_mask(W, is_bound[4], is_bound[5], border_width[2])

        t = repeat(t, "T -> T H W", T=T, H=H, W=W)
        h = repeat(h, "H -> T H W", T=T, H=H, W=W)
        w = repeat(w, "W -> T H W", T=T, H=H, W=W)

        mask = torch.stack([t, h, w]).min(dim=0).values
        mask = rearrange(mask, "T H W -> 1 1 T H W")
        return mask
    

    def tile_forward(self, hidden_states, tile_size, tile_stride):
        B, C, T, H, W = hidden_states.shape
        size_t, size_h, size_w = tile_size
        stride_t, stride_h, stride_w = tile_stride

        # Split tasks
        tasks = []
        for t in range(0, T, stride_t):
            if (t-stride_t >= 0 and t-stride_t+size_t >= T): continue
            for h in range(0, H, stride_h):
                if (h-stride_h >= 0 and h-stride_h+size_h >= H): continue
                for w in range(0, W, stride_w):
                    if (w-stride_w >= 0 and w-stride_w+size_w >= W): continue
                    t_, h_, w_ = t + size_t, h + size_h, w + size_w
                    tasks.append((t, t_, h, h_, w, w_))

        # Run
        torch_dtype = self.post_quant_conv.weight.dtype
        data_device = hidden_states.device
        computation_device = self.post_quant_conv.weight.device

        weight = torch.zeros((1, 1, (T - 1) * 4 + 1, H * 8, W * 8), dtype=torch_dtype, device=data_device)
        values = torch.zeros((B, 3, (T - 1) * 4 + 1, H * 8, W * 8), dtype=torch_dtype, device=data_device)

        for t, t_, h, h_, w, w_ in tqdm(tasks, desc="VAE decoding"):
            hidden_states_batch = hidden_states[:, :, t:t_, h:h_, w:w_].to(computation_device)
            hidden_states_batch = self.forward(hidden_states_batch).to(data_device)
            if t > 0:
                hidden_states_batch = hidden_states_batch[:, :, 1:]

            mask = self.build_mask(
                hidden_states_batch,
                is_bound=(t==0, t_>=T, h==0, h_>=H, w==0, w_>=W),
                border_width=((size_t - stride_t) * 4, (size_h - stride_h) * 8, (size_w - stride_w) * 8)
            ).to(dtype=torch_dtype, device=data_device)

            target_t = 0 if t==0 else t * 4 + 1
            target_h = h * 8
            target_w = w * 8
            values[
                :,
                :,
                target_t: target_t + hidden_states_batch.shape[2],
                target_h: target_h + hidden_states_batch.shape[3],
                target_w: target_w + hidden_states_batch.shape[4],
            ] += hidden_states_batch * mask
            weight[
                :,
                :,
                target_t: target_t + hidden_states_batch.shape[2],
                target_h: target_h + hidden_states_batch.shape[3],
                target_w: target_w + hidden_states_batch.shape[4],
            ] += mask
        return values / weight


    def decode_video(self, latents, tile_size=(17, 32, 32), tile_stride=(12, 24, 24)):
        latents = latents.to(self.post_quant_conv.weight.dtype)
        return self.tile_forward(latents, tile_size=tile_size, tile_stride=tile_stride)

    @staticmethod
    def state_dict_converter():
        return HunyuanVideoVAEDecoderStateDictConverter()


class HunyuanVideoVAEDecoderStateDictConverter:

    def __init__(self):
        pass

    def from_diffusers(self, state_dict):
        state_dict_ = {}
        for name in state_dict:
            if name.startswith('decoder.') or name.startswith('post_quant_conv.'):
                state_dict_[name] = state_dict[name]
        return state_dict_