Spaces:
Running
on
L40S
Running
on
L40S
File size: 18,187 Bytes
4bf9661 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
import torch
from .sd_unet import SDUNet
from .sdxl_unet import SDXLUNet
from .sd_text_encoder import SDTextEncoder
from .sdxl_text_encoder import SDXLTextEncoder, SDXLTextEncoder2
from .sd3_dit import SD3DiT
from .flux_dit import FluxDiT
from .hunyuan_dit import HunyuanDiT
from .cog_dit import CogDiT
from .hunyuan_video_dit import HunyuanVideoDiT
from .wan_video_dit import WanModel
class LoRAFromCivitai:
def __init__(self):
self.supported_model_classes = []
self.lora_prefix = []
self.renamed_lora_prefix = {}
self.special_keys = {}
def convert_state_dict(self, state_dict, lora_prefix="lora_unet_", alpha=1.0):
for key in state_dict:
if ".lora_up" in key:
return self.convert_state_dict_up_down(state_dict, lora_prefix, alpha)
return self.convert_state_dict_AB(state_dict, lora_prefix, alpha)
def convert_state_dict_up_down(self, state_dict, lora_prefix="lora_unet_", alpha=1.0):
renamed_lora_prefix = self.renamed_lora_prefix.get(lora_prefix, "")
state_dict_ = {}
for key in state_dict:
if ".lora_up" not in key:
continue
if not key.startswith(lora_prefix):
continue
weight_up = state_dict[key].to(device="cuda", dtype=torch.float16)
weight_down = state_dict[key.replace(".lora_up", ".lora_down")].to(device="cuda", dtype=torch.float16)
if len(weight_up.shape) == 4:
weight_up = weight_up.squeeze(3).squeeze(2).to(torch.float32)
weight_down = weight_down.squeeze(3).squeeze(2).to(torch.float32)
lora_weight = alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3)
else:
lora_weight = alpha * torch.mm(weight_up, weight_down)
target_name = key.split(".")[0].replace(lora_prefix, renamed_lora_prefix).replace("_", ".") + ".weight"
for special_key in self.special_keys:
target_name = target_name.replace(special_key, self.special_keys[special_key])
state_dict_[target_name] = lora_weight.cpu()
return state_dict_
def convert_state_dict_AB(self, state_dict, lora_prefix="", alpha=1.0, device="cuda", torch_dtype=torch.float16):
state_dict_ = {}
for key in state_dict:
if ".lora_B." not in key:
continue
if not key.startswith(lora_prefix):
continue
weight_up = state_dict[key].to(device=device, dtype=torch_dtype)
weight_down = state_dict[key.replace(".lora_B.", ".lora_A.")].to(device=device, dtype=torch_dtype)
if len(weight_up.shape) == 4:
weight_up = weight_up.squeeze(3).squeeze(2)
weight_down = weight_down.squeeze(3).squeeze(2)
lora_weight = alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3)
else:
lora_weight = alpha * torch.mm(weight_up, weight_down)
keys = key.split(".")
keys.pop(keys.index("lora_B"))
target_name = ".".join(keys)
target_name = target_name[len(lora_prefix):]
state_dict_[target_name] = lora_weight.cpu()
return state_dict_
def load(self, model, state_dict_lora, lora_prefix, alpha=1.0, model_resource=None):
state_dict_model = model.state_dict()
state_dict_lora = self.convert_state_dict(state_dict_lora, lora_prefix=lora_prefix, alpha=alpha)
if model_resource == "diffusers":
state_dict_lora = model.__class__.state_dict_converter().from_diffusers(state_dict_lora)
elif model_resource == "civitai":
state_dict_lora = model.__class__.state_dict_converter().from_civitai(state_dict_lora)
if isinstance(state_dict_lora, tuple):
state_dict_lora = state_dict_lora[0]
if len(state_dict_lora) > 0:
print(f" {len(state_dict_lora)} tensors are updated.")
for name in state_dict_lora:
fp8=False
if state_dict_model[name].dtype == torch.float8_e4m3fn:
state_dict_model[name]= state_dict_model[name].to(state_dict_lora[name].dtype)
fp8=True
state_dict_model[name] += state_dict_lora[name].to(
dtype=state_dict_model[name].dtype, device=state_dict_model[name].device)
if fp8:
state_dict_model[name] = state_dict_model[name].to(torch.float8_e4m3fn)
model.load_state_dict(state_dict_model)
def match(self, model, state_dict_lora):
for lora_prefix, model_class in zip(self.lora_prefix, self.supported_model_classes):
if not isinstance(model, model_class):
continue
state_dict_model = model.state_dict()
for model_resource in ["diffusers", "civitai"]:
try:
state_dict_lora_ = self.convert_state_dict(state_dict_lora, lora_prefix=lora_prefix, alpha=1.0)
converter_fn = model.__class__.state_dict_converter().from_diffusers if model_resource == "diffusers" \
else model.__class__.state_dict_converter().from_civitai
state_dict_lora_ = converter_fn(state_dict_lora_)
if isinstance(state_dict_lora_, tuple):
state_dict_lora_ = state_dict_lora_[0]
if len(state_dict_lora_) == 0:
continue
for name in state_dict_lora_:
if name not in state_dict_model:
break
else:
return lora_prefix, model_resource
except:
pass
return None
class SDLoRAFromCivitai(LoRAFromCivitai):
def __init__(self):
super().__init__()
self.supported_model_classes = [SDUNet, SDTextEncoder]
self.lora_prefix = ["lora_unet_", "lora_te_"]
self.special_keys = {
"down.blocks": "down_blocks",
"up.blocks": "up_blocks",
"mid.block": "mid_block",
"proj.in": "proj_in",
"proj.out": "proj_out",
"transformer.blocks": "transformer_blocks",
"to.q": "to_q",
"to.k": "to_k",
"to.v": "to_v",
"to.out": "to_out",
"text.model": "text_model",
"self.attn.q.proj": "self_attn.q_proj",
"self.attn.k.proj": "self_attn.k_proj",
"self.attn.v.proj": "self_attn.v_proj",
"self.attn.out.proj": "self_attn.out_proj",
"input.blocks": "model.diffusion_model.input_blocks",
"middle.block": "model.diffusion_model.middle_block",
"output.blocks": "model.diffusion_model.output_blocks",
}
class SDXLLoRAFromCivitai(LoRAFromCivitai):
def __init__(self):
super().__init__()
self.supported_model_classes = [SDXLUNet, SDXLTextEncoder, SDXLTextEncoder2]
self.lora_prefix = ["lora_unet_", "lora_te1_", "lora_te2_"]
self.renamed_lora_prefix = {"lora_te2_": "2"}
self.special_keys = {
"down.blocks": "down_blocks",
"up.blocks": "up_blocks",
"mid.block": "mid_block",
"proj.in": "proj_in",
"proj.out": "proj_out",
"transformer.blocks": "transformer_blocks",
"to.q": "to_q",
"to.k": "to_k",
"to.v": "to_v",
"to.out": "to_out",
"text.model": "conditioner.embedders.0.transformer.text_model",
"self.attn.q.proj": "self_attn.q_proj",
"self.attn.k.proj": "self_attn.k_proj",
"self.attn.v.proj": "self_attn.v_proj",
"self.attn.out.proj": "self_attn.out_proj",
"input.blocks": "model.diffusion_model.input_blocks",
"middle.block": "model.diffusion_model.middle_block",
"output.blocks": "model.diffusion_model.output_blocks",
"2conditioner.embedders.0.transformer.text_model.encoder.layers": "text_model.encoder.layers"
}
class FluxLoRAFromCivitai(LoRAFromCivitai):
def __init__(self):
super().__init__()
self.supported_model_classes = [FluxDiT, FluxDiT]
self.lora_prefix = ["lora_unet_", "transformer."]
self.renamed_lora_prefix = {}
self.special_keys = {
"single.blocks": "single_blocks",
"double.blocks": "double_blocks",
"img.attn": "img_attn",
"img.mlp": "img_mlp",
"img.mod": "img_mod",
"txt.attn": "txt_attn",
"txt.mlp": "txt_mlp",
"txt.mod": "txt_mod",
}
class GeneralLoRAFromPeft:
def __init__(self):
self.supported_model_classes = [SDUNet, SDXLUNet, SD3DiT, HunyuanDiT, FluxDiT, CogDiT, WanModel]
def get_name_dict(self, lora_state_dict):
lora_name_dict = {}
for key in lora_state_dict:
if ".lora_B." not in key:
continue
keys = key.split(".")
if len(keys) > keys.index("lora_B") + 2:
keys.pop(keys.index("lora_B") + 1)
keys.pop(keys.index("lora_B"))
if keys[0] == "diffusion_model":
keys.pop(0)
target_name = ".".join(keys)
lora_name_dict[target_name] = (key, key.replace(".lora_B.", ".lora_A."))
return lora_name_dict
def match(self, model: torch.nn.Module, state_dict_lora):
lora_name_dict = self.get_name_dict(state_dict_lora)
model_name_dict = {name: None for name, _ in model.named_parameters()}
matched_num = sum([i in model_name_dict for i in lora_name_dict])
if matched_num == len(lora_name_dict):
return "", ""
else:
return None
def fetch_device_and_dtype(self, state_dict):
device, dtype = None, None
for name, param in state_dict.items():
device, dtype = param.device, param.dtype
break
computation_device = device
computation_dtype = dtype
if computation_device == torch.device("cpu"):
if torch.cuda.is_available():
computation_device = torch.device("cuda")
if computation_dtype == torch.float8_e4m3fn:
computation_dtype = torch.float32
return device, dtype, computation_device, computation_dtype
def load(self, model, state_dict_lora, lora_prefix="", alpha=1.0, model_resource=""):
state_dict_model = model.state_dict()
device, dtype, computation_device, computation_dtype = self.fetch_device_and_dtype(state_dict_model)
lora_name_dict = self.get_name_dict(state_dict_lora)
for name in lora_name_dict:
weight_up = state_dict_lora[lora_name_dict[name][0]].to(device=computation_device, dtype=computation_dtype)
weight_down = state_dict_lora[lora_name_dict[name][1]].to(device=computation_device, dtype=computation_dtype)
if len(weight_up.shape) == 4:
weight_up = weight_up.squeeze(3).squeeze(2)
weight_down = weight_down.squeeze(3).squeeze(2)
weight_lora = alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3)
else:
weight_lora = alpha * torch.mm(weight_up, weight_down)
weight_model = state_dict_model[name].to(device=computation_device, dtype=computation_dtype)
weight_patched = weight_model + weight_lora
state_dict_model[name] = weight_patched.to(device=device, dtype=dtype)
print(f" {len(lora_name_dict)} tensors are updated.")
model.load_state_dict(state_dict_model)
class HunyuanVideoLoRAFromCivitai(LoRAFromCivitai):
def __init__(self):
super().__init__()
self.supported_model_classes = [HunyuanVideoDiT, HunyuanVideoDiT]
self.lora_prefix = ["diffusion_model.", "transformer."]
self.special_keys = {}
class FluxLoRAConverter:
def __init__(self):
pass
@staticmethod
def align_to_opensource_format(state_dict, alpha=1.0):
prefix_rename_dict = {
"single_blocks": "lora_unet_single_blocks",
"blocks": "lora_unet_double_blocks",
}
middle_rename_dict = {
"norm.linear": "modulation_lin",
"to_qkv_mlp": "linear1",
"proj_out": "linear2",
"norm1_a.linear": "img_mod_lin",
"norm1_b.linear": "txt_mod_lin",
"attn.a_to_qkv": "img_attn_qkv",
"attn.b_to_qkv": "txt_attn_qkv",
"attn.a_to_out": "img_attn_proj",
"attn.b_to_out": "txt_attn_proj",
"ff_a.0": "img_mlp_0",
"ff_a.2": "img_mlp_2",
"ff_b.0": "txt_mlp_0",
"ff_b.2": "txt_mlp_2",
}
suffix_rename_dict = {
"lora_B.weight": "lora_up.weight",
"lora_A.weight": "lora_down.weight",
}
state_dict_ = {}
for name, param in state_dict.items():
names = name.split(".")
if names[-2] != "lora_A" and names[-2] != "lora_B":
names.pop(-2)
prefix = names[0]
middle = ".".join(names[2:-2])
suffix = ".".join(names[-2:])
block_id = names[1]
if middle not in middle_rename_dict:
continue
rename = prefix_rename_dict[prefix] + "_" + block_id + "_" + middle_rename_dict[middle] + "." + suffix_rename_dict[suffix]
state_dict_[rename] = param
if rename.endswith("lora_up.weight"):
state_dict_[rename.replace("lora_up.weight", "alpha")] = torch.tensor((alpha,))[0]
return state_dict_
@staticmethod
def align_to_diffsynth_format(state_dict):
rename_dict = {
"lora_unet_double_blocks_blockid_img_mod_lin.lora_down.weight": "blocks.blockid.norm1_a.linear.lora_A.default.weight",
"lora_unet_double_blocks_blockid_img_mod_lin.lora_up.weight": "blocks.blockid.norm1_a.linear.lora_B.default.weight",
"lora_unet_double_blocks_blockid_txt_mod_lin.lora_down.weight": "blocks.blockid.norm1_b.linear.lora_A.default.weight",
"lora_unet_double_blocks_blockid_txt_mod_lin.lora_up.weight": "blocks.blockid.norm1_b.linear.lora_B.default.weight",
"lora_unet_double_blocks_blockid_img_attn_qkv.lora_down.weight": "blocks.blockid.attn.a_to_qkv.lora_A.default.weight",
"lora_unet_double_blocks_blockid_img_attn_qkv.lora_up.weight": "blocks.blockid.attn.a_to_qkv.lora_B.default.weight",
"lora_unet_double_blocks_blockid_txt_attn_qkv.lora_down.weight": "blocks.blockid.attn.b_to_qkv.lora_A.default.weight",
"lora_unet_double_blocks_blockid_txt_attn_qkv.lora_up.weight": "blocks.blockid.attn.b_to_qkv.lora_B.default.weight",
"lora_unet_double_blocks_blockid_img_attn_proj.lora_down.weight": "blocks.blockid.attn.a_to_out.lora_A.default.weight",
"lora_unet_double_blocks_blockid_img_attn_proj.lora_up.weight": "blocks.blockid.attn.a_to_out.lora_B.default.weight",
"lora_unet_double_blocks_blockid_txt_attn_proj.lora_down.weight": "blocks.blockid.attn.b_to_out.lora_A.default.weight",
"lora_unet_double_blocks_blockid_txt_attn_proj.lora_up.weight": "blocks.blockid.attn.b_to_out.lora_B.default.weight",
"lora_unet_double_blocks_blockid_img_mlp_0.lora_down.weight": "blocks.blockid.ff_a.0.lora_A.default.weight",
"lora_unet_double_blocks_blockid_img_mlp_0.lora_up.weight": "blocks.blockid.ff_a.0.lora_B.default.weight",
"lora_unet_double_blocks_blockid_img_mlp_2.lora_down.weight": "blocks.blockid.ff_a.2.lora_A.default.weight",
"lora_unet_double_blocks_blockid_img_mlp_2.lora_up.weight": "blocks.blockid.ff_a.2.lora_B.default.weight",
"lora_unet_double_blocks_blockid_txt_mlp_0.lora_down.weight": "blocks.blockid.ff_b.0.lora_A.default.weight",
"lora_unet_double_blocks_blockid_txt_mlp_0.lora_up.weight": "blocks.blockid.ff_b.0.lora_B.default.weight",
"lora_unet_double_blocks_blockid_txt_mlp_2.lora_down.weight": "blocks.blockid.ff_b.2.lora_A.default.weight",
"lora_unet_double_blocks_blockid_txt_mlp_2.lora_up.weight": "blocks.blockid.ff_b.2.lora_B.default.weight",
"lora_unet_single_blocks_blockid_modulation_lin.lora_down.weight": "single_blocks.blockid.norm.linear.lora_A.default.weight",
"lora_unet_single_blocks_blockid_modulation_lin.lora_up.weight": "single_blocks.blockid.norm.linear.lora_B.default.weight",
"lora_unet_single_blocks_blockid_linear1.lora_down.weight": "single_blocks.blockid.to_qkv_mlp.lora_A.default.weight",
"lora_unet_single_blocks_blockid_linear1.lora_up.weight": "single_blocks.blockid.to_qkv_mlp.lora_B.default.weight",
"lora_unet_single_blocks_blockid_linear2.lora_down.weight": "single_blocks.blockid.proj_out.lora_A.default.weight",
"lora_unet_single_blocks_blockid_linear2.lora_up.weight": "single_blocks.blockid.proj_out.lora_B.default.weight",
}
def guess_block_id(name):
names = name.split("_")
for i in names:
if i.isdigit():
return i, name.replace(f"_{i}_", "_blockid_")
return None, None
state_dict_ = {}
for name, param in state_dict.items():
block_id, source_name = guess_block_id(name)
if source_name in rename_dict:
target_name = rename_dict[source_name]
target_name = target_name.replace(".blockid.", f".{block_id}.")
state_dict_[target_name] = param
else:
state_dict_[name] = param
return state_dict_
def get_lora_loaders():
return [SDLoRAFromCivitai(), SDXLLoRAFromCivitai(), FluxLoRAFromCivitai(), HunyuanVideoLoRAFromCivitai(), GeneralLoRAFromPeft()]
|