Spaces:
Running
on
L40S
Running
on
L40S
File size: 33,689 Bytes
4bf9661 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 |
# Copyright 2025 StepFun Inc. All Rights Reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# ==============================================================================
from typing import Dict, Optional, Tuple, Union, List
import torch, math
from torch import nn
from einops import rearrange, repeat
from tqdm import tqdm
class RMSNorm(nn.Module):
def __init__(
self,
dim: int,
elementwise_affine=True,
eps: float = 1e-6,
device=None,
dtype=None,
):
"""
Initialize the RMSNorm normalization layer.
Args:
dim (int): The dimension of the input tensor.
eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.
Attributes:
eps (float): A small value added to the denominator for numerical stability.
weight (nn.Parameter): Learnable scaling parameter.
"""
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.eps = eps
if elementwise_affine:
self.weight = nn.Parameter(torch.ones(dim, **factory_kwargs))
def _norm(self, x):
"""
Apply the RMSNorm normalization to the input tensor.
Args:
x (torch.Tensor): The input tensor.
Returns:
torch.Tensor: The normalized tensor.
"""
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
"""
Forward pass through the RMSNorm layer.
Args:
x (torch.Tensor): The input tensor.
Returns:
torch.Tensor: The output tensor after applying RMSNorm.
"""
output = self._norm(x.float()).type_as(x)
if hasattr(self, "weight"):
output = output * self.weight
return output
ACTIVATION_FUNCTIONS = {
"swish": nn.SiLU(),
"silu": nn.SiLU(),
"mish": nn.Mish(),
"gelu": nn.GELU(),
"relu": nn.ReLU(),
}
def get_activation(act_fn: str) -> nn.Module:
"""Helper function to get activation function from string.
Args:
act_fn (str): Name of activation function.
Returns:
nn.Module: Activation function.
"""
act_fn = act_fn.lower()
if act_fn in ACTIVATION_FUNCTIONS:
return ACTIVATION_FUNCTIONS[act_fn]
else:
raise ValueError(f"Unsupported activation function: {act_fn}")
def get_timestep_embedding(
timesteps: torch.Tensor,
embedding_dim: int,
flip_sin_to_cos: bool = False,
downscale_freq_shift: float = 1,
scale: float = 1,
max_period: int = 10000,
):
"""
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the
embeddings. :return: an [N x dim] Tensor of positional embeddings.
"""
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
half_dim = embedding_dim // 2
exponent = -math.log(max_period) * torch.arange(
start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
)
exponent = exponent / (half_dim - downscale_freq_shift)
emb = torch.exp(exponent)
emb = timesteps[:, None].float() * emb[None, :]
# scale embeddings
emb = scale * emb
# concat sine and cosine embeddings
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
# flip sine and cosine embeddings
if flip_sin_to_cos:
emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)
# zero pad
if embedding_dim % 2 == 1:
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
return emb
class Timesteps(nn.Module):
def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float):
super().__init__()
self.num_channels = num_channels
self.flip_sin_to_cos = flip_sin_to_cos
self.downscale_freq_shift = downscale_freq_shift
def forward(self, timesteps):
t_emb = get_timestep_embedding(
timesteps,
self.num_channels,
flip_sin_to_cos=self.flip_sin_to_cos,
downscale_freq_shift=self.downscale_freq_shift,
)
return t_emb
class TimestepEmbedding(nn.Module):
def __init__(
self,
in_channels: int,
time_embed_dim: int,
act_fn: str = "silu",
out_dim: int = None,
post_act_fn: Optional[str] = None,
cond_proj_dim=None,
sample_proj_bias=True
):
super().__init__()
linear_cls = nn.Linear
self.linear_1 = linear_cls(
in_channels,
time_embed_dim,
bias=sample_proj_bias,
)
if cond_proj_dim is not None:
self.cond_proj = linear_cls(
cond_proj_dim,
in_channels,
bias=False,
)
else:
self.cond_proj = None
self.act = get_activation(act_fn)
if out_dim is not None:
time_embed_dim_out = out_dim
else:
time_embed_dim_out = time_embed_dim
self.linear_2 = linear_cls(
time_embed_dim,
time_embed_dim_out,
bias=sample_proj_bias,
)
if post_act_fn is None:
self.post_act = None
else:
self.post_act = get_activation(post_act_fn)
def forward(self, sample, condition=None):
if condition is not None:
sample = sample + self.cond_proj(condition)
sample = self.linear_1(sample)
if self.act is not None:
sample = self.act(sample)
sample = self.linear_2(sample)
if self.post_act is not None:
sample = self.post_act(sample)
return sample
class PixArtAlphaCombinedTimestepSizeEmbeddings(nn.Module):
def __init__(self, embedding_dim, size_emb_dim, use_additional_conditions: bool = False):
super().__init__()
self.outdim = size_emb_dim
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
self.use_additional_conditions = use_additional_conditions
if self.use_additional_conditions:
self.additional_condition_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
self.resolution_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim)
self.nframe_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
self.fps_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
def forward(self, timestep, resolution=None, nframe=None, fps=None):
hidden_dtype = timestep.dtype
timesteps_proj = self.time_proj(timestep)
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (N, D)
if self.use_additional_conditions:
batch_size = timestep.shape[0]
resolution_emb = self.additional_condition_proj(resolution.flatten()).to(hidden_dtype)
resolution_emb = self.resolution_embedder(resolution_emb).reshape(batch_size, -1)
nframe_emb = self.additional_condition_proj(nframe.flatten()).to(hidden_dtype)
nframe_emb = self.nframe_embedder(nframe_emb).reshape(batch_size, -1)
conditioning = timesteps_emb + resolution_emb + nframe_emb
if fps is not None:
fps_emb = self.additional_condition_proj(fps.flatten()).to(hidden_dtype)
fps_emb = self.fps_embedder(fps_emb).reshape(batch_size, -1)
conditioning = conditioning + fps_emb
else:
conditioning = timesteps_emb
return conditioning
class AdaLayerNormSingle(nn.Module):
r"""
Norm layer adaptive layer norm single (adaLN-single).
As proposed in PixArt-Alpha (see: https://arxiv.org/abs/2310.00426; Section 2.3).
Parameters:
embedding_dim (`int`): The size of each embedding vector.
use_additional_conditions (`bool`): To use additional conditions for normalization or not.
"""
def __init__(self, embedding_dim: int, use_additional_conditions: bool = False, time_step_rescale=1000):
super().__init__()
self.emb = PixArtAlphaCombinedTimestepSizeEmbeddings(
embedding_dim, size_emb_dim=embedding_dim // 2, use_additional_conditions=use_additional_conditions
)
self.silu = nn.SiLU()
self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True)
self.time_step_rescale = time_step_rescale ## timestep usually in [0, 1], we rescale it to [0,1000] for stability
def forward(
self,
timestep: torch.Tensor,
added_cond_kwargs: Dict[str, torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
embedded_timestep = self.emb(timestep*self.time_step_rescale, **added_cond_kwargs)
out = self.linear(self.silu(embedded_timestep))
return out, embedded_timestep
class PixArtAlphaTextProjection(nn.Module):
"""
Projects caption embeddings. Also handles dropout for classifier-free guidance.
Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
"""
def __init__(self, in_features, hidden_size):
super().__init__()
self.linear_1 = nn.Linear(
in_features,
hidden_size,
bias=True,
)
self.act_1 = nn.GELU(approximate="tanh")
self.linear_2 = nn.Linear(
hidden_size,
hidden_size,
bias=True,
)
def forward(self, caption):
hidden_states = self.linear_1(caption)
hidden_states = self.act_1(hidden_states)
hidden_states = self.linear_2(hidden_states)
return hidden_states
class Attention(nn.Module):
def __init__(self):
super().__init__()
def attn_processor(self, attn_type):
if attn_type == 'torch':
return self.torch_attn_func
elif attn_type == 'parallel':
return self.parallel_attn_func
else:
raise Exception('Not supported attention type...')
def torch_attn_func(
self,
q,
k,
v,
attn_mask=None,
causal=False,
drop_rate=0.0,
**kwargs
):
if attn_mask is not None and attn_mask.dtype != torch.bool:
attn_mask = attn_mask.to(q.dtype)
if attn_mask is not None and attn_mask.ndim == 3: ## no head
n_heads = q.shape[2]
attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1, 1)
q, k, v = map(lambda x: rearrange(x, 'b s h d -> b h s d'), (q, k, v))
if attn_mask is not None:
attn_mask = attn_mask.to(q.device)
x = torch.nn.functional.scaled_dot_product_attention(
q, k, v, attn_mask=attn_mask, dropout_p=drop_rate, is_causal=causal
)
x = rearrange(x, 'b h s d -> b s h d')
return x
class RoPE1D:
def __init__(self, freq=1e4, F0=1.0, scaling_factor=1.0):
self.base = freq
self.F0 = F0
self.scaling_factor = scaling_factor
self.cache = {}
def get_cos_sin(self, D, seq_len, device, dtype):
if (D, seq_len, device, dtype) not in self.cache:
inv_freq = 1.0 / (self.base ** (torch.arange(0, D, 2).float().to(device) / D))
t = torch.arange(seq_len, device=device, dtype=inv_freq.dtype)
freqs = torch.einsum("i,j->ij", t, inv_freq).to(dtype)
freqs = torch.cat((freqs, freqs), dim=-1)
cos = freqs.cos() # (Seq, Dim)
sin = freqs.sin()
self.cache[D, seq_len, device, dtype] = (cos, sin)
return self.cache[D, seq_len, device, dtype]
@staticmethod
def rotate_half(x):
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2:]
return torch.cat((-x2, x1), dim=-1)
def apply_rope1d(self, tokens, pos1d, cos, sin):
assert pos1d.ndim == 2
cos = torch.nn.functional.embedding(pos1d, cos)[:, :, None, :]
sin = torch.nn.functional.embedding(pos1d, sin)[:, :, None, :]
return (tokens * cos) + (self.rotate_half(tokens) * sin)
def __call__(self, tokens, positions):
"""
input:
* tokens: batch_size x ntokens x nheads x dim
* positions: batch_size x ntokens (t position of each token)
output:
* tokens after applying RoPE2D (batch_size x ntokens x nheads x dim)
"""
D = tokens.size(3)
assert positions.ndim == 2 # Batch, Seq
cos, sin = self.get_cos_sin(D, int(positions.max()) + 1, tokens.device, tokens.dtype)
tokens = self.apply_rope1d(tokens, positions, cos, sin)
return tokens
class RoPE3D(RoPE1D):
def __init__(self, freq=1e4, F0=1.0, scaling_factor=1.0):
super(RoPE3D, self).__init__(freq, F0, scaling_factor)
self.position_cache = {}
def get_mesh_3d(self, rope_positions, bsz):
f, h, w = rope_positions
if f"{f}-{h}-{w}" not in self.position_cache:
x = torch.arange(f, device='cpu')
y = torch.arange(h, device='cpu')
z = torch.arange(w, device='cpu')
self.position_cache[f"{f}-{h}-{w}"] = torch.cartesian_prod(x, y, z).view(1, f*h*w, 3).expand(bsz, -1, 3)
return self.position_cache[f"{f}-{h}-{w}"]
def __call__(self, tokens, rope_positions, ch_split, parallel=False):
"""
input:
* tokens: batch_size x ntokens x nheads x dim
* rope_positions: list of (f, h, w)
output:
* tokens after applying RoPE2D (batch_size x ntokens x nheads x dim)
"""
assert sum(ch_split) == tokens.size(-1);
mesh_grid = self.get_mesh_3d(rope_positions, bsz=tokens.shape[0])
out = []
for i, (D, x) in enumerate(zip(ch_split, torch.split(tokens, ch_split, dim=-1))):
cos, sin = self.get_cos_sin(D, int(mesh_grid.max()) + 1, tokens.device, tokens.dtype)
if parallel:
pass
else:
mesh = mesh_grid[:, :, i].clone()
x = self.apply_rope1d(x, mesh.to(tokens.device), cos, sin)
out.append(x)
tokens = torch.cat(out, dim=-1)
return tokens
class SelfAttention(Attention):
def __init__(self, hidden_dim, head_dim, bias=False, with_rope=True, with_qk_norm=True, attn_type='torch'):
super().__init__()
self.head_dim = head_dim
self.n_heads = hidden_dim // head_dim
self.wqkv = nn.Linear(hidden_dim, hidden_dim*3, bias=bias)
self.wo = nn.Linear(hidden_dim, hidden_dim, bias=bias)
self.with_rope = with_rope
self.with_qk_norm = with_qk_norm
if self.with_qk_norm:
self.q_norm = RMSNorm(head_dim, elementwise_affine=True)
self.k_norm = RMSNorm(head_dim, elementwise_affine=True)
if self.with_rope:
self.rope_3d = RoPE3D(freq=1e4, F0=1.0, scaling_factor=1.0)
self.rope_ch_split = [64, 32, 32]
self.core_attention = self.attn_processor(attn_type=attn_type)
self.parallel = attn_type=='parallel'
def apply_rope3d(self, x, fhw_positions, rope_ch_split, parallel=True):
x = self.rope_3d(x, fhw_positions, rope_ch_split, parallel)
return x
def forward(
self,
x,
cu_seqlens=None,
max_seqlen=None,
rope_positions=None,
attn_mask=None
):
xqkv = self.wqkv(x)
xqkv = xqkv.view(*x.shape[:-1], self.n_heads, 3*self.head_dim)
xq, xk, xv = torch.split(xqkv, [self.head_dim]*3, dim=-1) ## seq_len, n, dim
if self.with_qk_norm:
xq = self.q_norm(xq)
xk = self.k_norm(xk)
if self.with_rope:
xq = self.apply_rope3d(xq, rope_positions, self.rope_ch_split, parallel=self.parallel)
xk = self.apply_rope3d(xk, rope_positions, self.rope_ch_split, parallel=self.parallel)
output = self.core_attention(
xq,
xk,
xv,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
attn_mask=attn_mask
)
output = rearrange(output, 'b s h d -> b s (h d)')
output = self.wo(output)
return output
class CrossAttention(Attention):
def __init__(self, hidden_dim, head_dim, bias=False, with_qk_norm=True, attn_type='torch'):
super().__init__()
self.head_dim = head_dim
self.n_heads = hidden_dim // head_dim
self.wq = nn.Linear(hidden_dim, hidden_dim, bias=bias)
self.wkv = nn.Linear(hidden_dim, hidden_dim*2, bias=bias)
self.wo = nn.Linear(hidden_dim, hidden_dim, bias=bias)
self.with_qk_norm = with_qk_norm
if self.with_qk_norm:
self.q_norm = RMSNorm(head_dim, elementwise_affine=True)
self.k_norm = RMSNorm(head_dim, elementwise_affine=True)
self.core_attention = self.attn_processor(attn_type=attn_type)
def forward(
self,
x: torch.Tensor,
encoder_hidden_states: torch.Tensor,
attn_mask=None
):
xq = self.wq(x)
xq = xq.view(*xq.shape[:-1], self.n_heads, self.head_dim)
xkv = self.wkv(encoder_hidden_states)
xkv = xkv.view(*xkv.shape[:-1], self.n_heads, 2*self.head_dim)
xk, xv = torch.split(xkv, [self.head_dim]*2, dim=-1) ## seq_len, n, dim
if self.with_qk_norm:
xq = self.q_norm(xq)
xk = self.k_norm(xk)
output = self.core_attention(
xq,
xk,
xv,
attn_mask=attn_mask
)
output = rearrange(output, 'b s h d -> b s (h d)')
output = self.wo(output)
return output
class GELU(nn.Module):
r"""
GELU activation function with tanh approximation support with `approximate="tanh"`.
Parameters:
dim_in (`int`): The number of channels in the input.
dim_out (`int`): The number of channels in the output.
approximate (`str`, *optional*, defaults to `"none"`): If `"tanh"`, use tanh approximation.
bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
"""
def __init__(self, dim_in: int, dim_out: int, approximate: str = "none", bias: bool = True):
super().__init__()
self.proj = nn.Linear(dim_in, dim_out, bias=bias)
self.approximate = approximate
def gelu(self, gate: torch.Tensor) -> torch.Tensor:
return torch.nn.functional.gelu(gate, approximate=self.approximate)
def forward(self, hidden_states):
hidden_states = self.proj(hidden_states)
hidden_states = self.gelu(hidden_states)
return hidden_states
class FeedForward(nn.Module):
def __init__(
self,
dim: int,
inner_dim: Optional[int] = None,
dim_out: Optional[int] = None,
mult: int = 4,
bias: bool = False,
):
super().__init__()
inner_dim = dim*mult if inner_dim is None else inner_dim
dim_out = dim if dim_out is None else dim_out
self.net = nn.ModuleList([
GELU(dim, inner_dim, approximate="tanh", bias=bias),
nn.Identity(),
nn.Linear(inner_dim, dim_out, bias=bias)
])
def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor:
for module in self.net:
hidden_states = module(hidden_states)
return hidden_states
def modulate(x, scale, shift):
x = x * (1 + scale) + shift
return x
def gate(x, gate):
x = gate * x
return x
class StepVideoTransformerBlock(nn.Module):
r"""
A basic Transformer block.
Parameters:
dim (`int`): The number of channels in the input and output.
num_attention_heads (`int`): The number of heads to use for multi-head attention.
attention_head_dim (`int`): The number of channels in each head.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
num_embeds_ada_norm (:
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
attention_bias (:
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
only_cross_attention (`bool`, *optional*):
Whether to use only cross-attention layers. In this case two cross attention layers are used.
double_self_attention (`bool`, *optional*):
Whether to use two self-attention layers. In this case no cross attention layers are used.
upcast_attention (`bool`, *optional*):
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
Whether to use learnable elementwise affine parameters for normalization.
norm_type (`str`, *optional*, defaults to `"layer_norm"`):
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
final_dropout (`bool` *optional*, defaults to False):
Whether to apply a final dropout after the last feed-forward layer.
attention_type (`str`, *optional*, defaults to `"default"`):
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
positional_embeddings (`str`, *optional*, defaults to `None`):
The type of positional embeddings to apply to.
num_positional_embeddings (`int`, *optional*, defaults to `None`):
The maximum number of positional embeddings to apply.
"""
def __init__(
self,
dim: int,
attention_head_dim: int,
norm_eps: float = 1e-5,
ff_inner_dim: Optional[int] = None,
ff_bias: bool = False,
attention_type: str = 'parallel'
):
super().__init__()
self.dim = dim
self.norm1 = nn.LayerNorm(dim, eps=norm_eps)
self.attn1 = SelfAttention(dim, attention_head_dim, bias=False, with_rope=True, with_qk_norm=True, attn_type=attention_type)
self.norm2 = nn.LayerNorm(dim, eps=norm_eps)
self.attn2 = CrossAttention(dim, attention_head_dim, bias=False, with_qk_norm=True, attn_type='torch')
self.ff = FeedForward(dim=dim, inner_dim=ff_inner_dim, dim_out=dim, bias=ff_bias)
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) /dim**0.5)
@torch.no_grad()
def forward(
self,
q: torch.Tensor,
kv: Optional[torch.Tensor] = None,
timestep: Optional[torch.LongTensor] = None,
attn_mask = None,
rope_positions: list = None,
) -> torch.Tensor:
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
torch.clone(chunk) for chunk in (self.scale_shift_table[None].to(dtype=q.dtype, device=q.device) + timestep.reshape(-1, 6, self.dim)).chunk(6, dim=1)
)
scale_shift_q = modulate(self.norm1(q), scale_msa, shift_msa)
attn_q = self.attn1(
scale_shift_q,
rope_positions=rope_positions
)
q = gate(attn_q, gate_msa) + q
attn_q = self.attn2(
q,
kv,
attn_mask
)
q = attn_q + q
scale_shift_q = modulate(self.norm2(q), scale_mlp, shift_mlp)
ff_output = self.ff(scale_shift_q)
q = gate(ff_output, gate_mlp) + q
return q
class PatchEmbed(nn.Module):
"""2D Image to Patch Embedding"""
def __init__(
self,
patch_size=64,
in_channels=3,
embed_dim=768,
layer_norm=False,
flatten=True,
bias=True,
):
super().__init__()
self.flatten = flatten
self.layer_norm = layer_norm
self.proj = nn.Conv2d(
in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias
)
def forward(self, latent):
latent = self.proj(latent).to(latent.dtype)
if self.flatten:
latent = latent.flatten(2).transpose(1, 2) # BCHW -> BNC
if self.layer_norm:
latent = self.norm(latent)
return latent
class StepVideoModel(torch.nn.Module):
def __init__(
self,
num_attention_heads: int = 48,
attention_head_dim: int = 128,
in_channels: int = 64,
out_channels: Optional[int] = 64,
num_layers: int = 48,
dropout: float = 0.0,
patch_size: int = 1,
norm_type: str = "ada_norm_single",
norm_elementwise_affine: bool = False,
norm_eps: float = 1e-6,
use_additional_conditions: Optional[bool] = False,
caption_channels: Optional[Union[int, List, Tuple]] = [6144, 1024],
attention_type: Optional[str] = "torch",
):
super().__init__()
# Set some common variables used across the board.
self.inner_dim = num_attention_heads * attention_head_dim
self.out_channels = in_channels if out_channels is None else out_channels
self.use_additional_conditions = use_additional_conditions
self.pos_embed = PatchEmbed(
patch_size=patch_size,
in_channels=in_channels,
embed_dim=self.inner_dim,
)
self.transformer_blocks = nn.ModuleList(
[
StepVideoTransformerBlock(
dim=self.inner_dim,
attention_head_dim=attention_head_dim,
attention_type=attention_type
)
for _ in range(num_layers)
]
)
# 3. Output blocks.
self.norm_out = nn.LayerNorm(self.inner_dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine)
self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim**0.5)
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels)
self.patch_size = patch_size
self.adaln_single = AdaLayerNormSingle(
self.inner_dim, use_additional_conditions=self.use_additional_conditions
)
if isinstance(caption_channels, int):
caption_channel = caption_channels
else:
caption_channel, clip_channel = caption_channels
self.clip_projection = nn.Linear(clip_channel, self.inner_dim)
self.caption_norm = nn.LayerNorm(caption_channel, eps=norm_eps, elementwise_affine=norm_elementwise_affine)
self.caption_projection = PixArtAlphaTextProjection(
in_features=caption_channel, hidden_size=self.inner_dim
)
self.parallel = attention_type=='parallel'
def patchfy(self, hidden_states):
hidden_states = rearrange(hidden_states, 'b f c h w -> (b f) c h w')
hidden_states = self.pos_embed(hidden_states)
return hidden_states
def prepare_attn_mask(self, encoder_attention_mask, encoder_hidden_states, q_seqlen):
kv_seqlens = encoder_attention_mask.sum(dim=1).int()
mask = torch.zeros([len(kv_seqlens), q_seqlen, max(kv_seqlens)], dtype=torch.bool, device=encoder_attention_mask.device)
encoder_hidden_states = encoder_hidden_states[:,: max(kv_seqlens)]
for i, kv_len in enumerate(kv_seqlens):
mask[i, :, :kv_len] = 1
return encoder_hidden_states, mask
def block_forward(
self,
hidden_states,
encoder_hidden_states=None,
timestep=None,
rope_positions=None,
attn_mask=None,
parallel=True
):
for block in tqdm(self.transformer_blocks, desc="Transformer blocks"):
hidden_states = block(
hidden_states,
encoder_hidden_states,
timestep=timestep,
attn_mask=attn_mask,
rope_positions=rope_positions
)
return hidden_states
@torch.inference_mode()
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_hidden_states_2: Optional[torch.Tensor] = None,
timestep: Optional[torch.LongTensor] = None,
added_cond_kwargs: Dict[str, torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
fps: torch.Tensor=None,
return_dict: bool = False,
):
assert hidden_states.ndim==5; "hidden_states's shape should be (bsz, f, ch, h ,w)"
bsz, frame, _, height, width = hidden_states.shape
height, width = height // self.patch_size, width // self.patch_size
hidden_states = self.patchfy(hidden_states)
len_frame = hidden_states.shape[1]
if self.use_additional_conditions:
added_cond_kwargs = {
"resolution": torch.tensor([(height, width)]*bsz, device=hidden_states.device, dtype=hidden_states.dtype),
"nframe": torch.tensor([frame]*bsz, device=hidden_states.device, dtype=hidden_states.dtype),
"fps": fps
}
else:
added_cond_kwargs = {}
timestep, embedded_timestep = self.adaln_single(
timestep, added_cond_kwargs=added_cond_kwargs
)
encoder_hidden_states = self.caption_projection(self.caption_norm(encoder_hidden_states))
if encoder_hidden_states_2 is not None and hasattr(self, 'clip_projection'):
clip_embedding = self.clip_projection(encoder_hidden_states_2)
encoder_hidden_states = torch.cat([clip_embedding, encoder_hidden_states], dim=1)
hidden_states = rearrange(hidden_states, '(b f) l d-> b (f l) d', b=bsz, f=frame, l=len_frame).contiguous()
encoder_hidden_states, attn_mask = self.prepare_attn_mask(encoder_attention_mask, encoder_hidden_states, q_seqlen=frame*len_frame)
hidden_states = self.block_forward(
hidden_states,
encoder_hidden_states,
timestep=timestep,
rope_positions=[frame, height, width],
attn_mask=attn_mask,
parallel=self.parallel
)
hidden_states = rearrange(hidden_states, 'b (f l) d -> (b f) l d', b=bsz, f=frame, l=len_frame)
embedded_timestep = repeat(embedded_timestep, 'b d -> (b f) d', f=frame).contiguous()
shift, scale = (self.scale_shift_table[None].to(dtype=embedded_timestep.dtype, device=embedded_timestep.device) + embedded_timestep[:, None]).chunk(2, dim=1)
hidden_states = self.norm_out(hidden_states)
# Modulation
hidden_states = hidden_states * (1 + scale) + shift
hidden_states = self.proj_out(hidden_states)
# unpatchify
hidden_states = hidden_states.reshape(
shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
)
hidden_states = rearrange(hidden_states, 'n h w p q c -> n c h p w q')
output = hidden_states.reshape(
shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
)
output = rearrange(output, '(b f) c h w -> b f c h w', f=frame)
if return_dict:
return {'x': output}
return output
@staticmethod
def state_dict_converter():
return StepVideoDiTStateDictConverter()
class StepVideoDiTStateDictConverter:
def __init__(self):
super().__init__()
def from_diffusers(self, state_dict):
return state_dict
def from_civitai(self, state_dict):
return state_dict
|