File size: 33,689 Bytes
4bf9661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
# Copyright 2025 StepFun Inc. All Rights Reserved.
# 
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# ==============================================================================
from typing import Dict, Optional, Tuple, Union, List
import torch, math
from torch import nn
from einops import rearrange, repeat
from tqdm import tqdm


class RMSNorm(nn.Module):
    def __init__(
        self,
        dim: int,
        elementwise_affine=True,
        eps: float = 1e-6,
        device=None,
        dtype=None,
    ):
        """
        Initialize the RMSNorm normalization layer.

        Args:
            dim (int): The dimension of the input tensor.
            eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.

        Attributes:
            eps (float): A small value added to the denominator for numerical stability.
            weight (nn.Parameter): Learnable scaling parameter.

        """
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()
        self.eps = eps
        if elementwise_affine:
            self.weight = nn.Parameter(torch.ones(dim, **factory_kwargs))

    def _norm(self, x):
        """
        Apply the RMSNorm normalization to the input tensor.

        Args:
            x (torch.Tensor): The input tensor.

        Returns:
            torch.Tensor: The normalized tensor.

        """
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)

    def forward(self, x):
        """
        Forward pass through the RMSNorm layer.

        Args:
            x (torch.Tensor): The input tensor.

        Returns:
            torch.Tensor: The output tensor after applying RMSNorm.

        """
        output = self._norm(x.float()).type_as(x)
        if hasattr(self, "weight"):
            output = output * self.weight
        return output
    

ACTIVATION_FUNCTIONS = {
    "swish": nn.SiLU(),
    "silu": nn.SiLU(),
    "mish": nn.Mish(),
    "gelu": nn.GELU(),
    "relu": nn.ReLU(),
}


def get_activation(act_fn: str) -> nn.Module:
    """Helper function to get activation function from string.

    Args:
        act_fn (str): Name of activation function.

    Returns:
        nn.Module: Activation function.
    """

    act_fn = act_fn.lower()
    if act_fn in ACTIVATION_FUNCTIONS:
        return ACTIVATION_FUNCTIONS[act_fn]
    else:
        raise ValueError(f"Unsupported activation function: {act_fn}")


def get_timestep_embedding(
    timesteps: torch.Tensor,
    embedding_dim: int,
    flip_sin_to_cos: bool = False,
    downscale_freq_shift: float = 1,
    scale: float = 1,
    max_period: int = 10000,
):
    """
    This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.

    :param timesteps: a 1-D Tensor of N indices, one per batch element.
                      These may be fractional.
    :param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the
    embeddings. :return: an [N x dim] Tensor of positional embeddings.
    """
    assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"

    half_dim = embedding_dim // 2
    exponent = -math.log(max_period) * torch.arange(
        start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
    )
    exponent = exponent / (half_dim - downscale_freq_shift)

    emb = torch.exp(exponent)
    emb = timesteps[:, None].float() * emb[None, :]

    # scale embeddings
    emb = scale * emb

    # concat sine and cosine embeddings
    emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)

    # flip sine and cosine embeddings
    if flip_sin_to_cos:
        emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)

    # zero pad
    if embedding_dim % 2 == 1:
        emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
    return emb


class Timesteps(nn.Module):
    def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float):
        super().__init__()
        self.num_channels = num_channels
        self.flip_sin_to_cos = flip_sin_to_cos
        self.downscale_freq_shift = downscale_freq_shift

    def forward(self, timesteps):
        t_emb = get_timestep_embedding(
            timesteps,
            self.num_channels,
            flip_sin_to_cos=self.flip_sin_to_cos,
            downscale_freq_shift=self.downscale_freq_shift,
        )
        return t_emb


class TimestepEmbedding(nn.Module):
    def __init__(
        self,
        in_channels: int,
        time_embed_dim: int,
        act_fn: str = "silu",
        out_dim: int = None,
        post_act_fn: Optional[str] = None,
        cond_proj_dim=None,
        sample_proj_bias=True
    ):
        super().__init__()
        linear_cls = nn.Linear

        self.linear_1 = linear_cls(
                in_channels, 
                time_embed_dim, 
                bias=sample_proj_bias,
            )

        if cond_proj_dim is not None:
            self.cond_proj = linear_cls(
                    cond_proj_dim, 
                    in_channels, 
                    bias=False,
                )
        else:
            self.cond_proj = None

        self.act = get_activation(act_fn)

        if out_dim is not None:
            time_embed_dim_out = out_dim
        else:
            time_embed_dim_out = time_embed_dim
            
        self.linear_2 = linear_cls(
                time_embed_dim, 
                time_embed_dim_out, 
                bias=sample_proj_bias, 
            )

        if post_act_fn is None:
            self.post_act = None
        else:
            self.post_act = get_activation(post_act_fn)

    def forward(self, sample, condition=None):
        if condition is not None:
            sample = sample + self.cond_proj(condition)
        sample = self.linear_1(sample)

        if self.act is not None:
            sample = self.act(sample)

        sample = self.linear_2(sample)

        if self.post_act is not None:
            sample = self.post_act(sample)
        return sample


class PixArtAlphaCombinedTimestepSizeEmbeddings(nn.Module):
    def __init__(self, embedding_dim, size_emb_dim, use_additional_conditions: bool = False):
        super().__init__()

        self.outdim = size_emb_dim
        self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
        self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)

        self.use_additional_conditions = use_additional_conditions
        if self.use_additional_conditions:
            self.additional_condition_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
            self.resolution_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim)
            self.nframe_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
            self.fps_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)

    def forward(self, timestep, resolution=None, nframe=None, fps=None):
        hidden_dtype = timestep.dtype

        timesteps_proj = self.time_proj(timestep)
        timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype))  # (N, D)

        if self.use_additional_conditions:
            batch_size = timestep.shape[0]
            resolution_emb = self.additional_condition_proj(resolution.flatten()).to(hidden_dtype)
            resolution_emb = self.resolution_embedder(resolution_emb).reshape(batch_size, -1)
            nframe_emb = self.additional_condition_proj(nframe.flatten()).to(hidden_dtype)
            nframe_emb = self.nframe_embedder(nframe_emb).reshape(batch_size, -1)
            conditioning = timesteps_emb + resolution_emb + nframe_emb

            if fps is not None:
                fps_emb = self.additional_condition_proj(fps.flatten()).to(hidden_dtype)
                fps_emb = self.fps_embedder(fps_emb).reshape(batch_size, -1)
                conditioning = conditioning + fps_emb
        else:
            conditioning = timesteps_emb

        return conditioning


class AdaLayerNormSingle(nn.Module):
    r"""
        Norm layer adaptive layer norm single (adaLN-single).

        As proposed in PixArt-Alpha (see: https://arxiv.org/abs/2310.00426; Section 2.3).

        Parameters:
            embedding_dim (`int`): The size of each embedding vector.
            use_additional_conditions (`bool`): To use additional conditions for normalization or not.
    """
    def __init__(self, embedding_dim: int, use_additional_conditions: bool = False, time_step_rescale=1000):
        super().__init__()

        self.emb = PixArtAlphaCombinedTimestepSizeEmbeddings(
            embedding_dim, size_emb_dim=embedding_dim // 2, use_additional_conditions=use_additional_conditions
        )

        self.silu = nn.SiLU()
        self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True)

        self.time_step_rescale = time_step_rescale  ## timestep usually in [0, 1], we rescale it to [0,1000] for stability

    def forward(
        self,
        timestep: torch.Tensor,
        added_cond_kwargs: Dict[str, torch.Tensor] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
        embedded_timestep = self.emb(timestep*self.time_step_rescale, **added_cond_kwargs)

        out = self.linear(self.silu(embedded_timestep))

        return out, embedded_timestep
    

class PixArtAlphaTextProjection(nn.Module):
    """
    Projects caption embeddings. Also handles dropout for classifier-free guidance.

    Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
    """

    def __init__(self, in_features, hidden_size):
        super().__init__()
        self.linear_1 = nn.Linear(
                in_features, 
                hidden_size, 
                bias=True, 
            )        
        self.act_1 = nn.GELU(approximate="tanh")
        self.linear_2 = nn.Linear(
                hidden_size, 
                hidden_size, 
                bias=True, 
            )

    def forward(self, caption):
        hidden_states = self.linear_1(caption)
        hidden_states = self.act_1(hidden_states)
        hidden_states = self.linear_2(hidden_states)
        return hidden_states


class Attention(nn.Module):
    def __init__(self):
        super().__init__()
    
    def attn_processor(self, attn_type):
        if attn_type == 'torch':
            return self.torch_attn_func
        elif attn_type == 'parallel':
            return self.parallel_attn_func
        else:
            raise Exception('Not supported attention type...')

    def torch_attn_func(
        self,
        q,
        k,
        v,
        attn_mask=None,
        causal=False,
        drop_rate=0.0,
        **kwargs
    ):

        if attn_mask is not None and attn_mask.dtype != torch.bool:
            attn_mask = attn_mask.to(q.dtype)
            
        if attn_mask is not None and attn_mask.ndim == 3:   ## no head
            n_heads = q.shape[2]
            attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1, 1)
        
        q, k, v = map(lambda x: rearrange(x, 'b s h d -> b h s d'), (q, k, v))
        if attn_mask is not None:
            attn_mask = attn_mask.to(q.device)
        x = torch.nn.functional.scaled_dot_product_attention(
            q, k, v, attn_mask=attn_mask, dropout_p=drop_rate, is_causal=causal
        )
        x = rearrange(x, 'b h s d -> b s h d')
        return x        


class RoPE1D:
    def __init__(self, freq=1e4, F0=1.0, scaling_factor=1.0):
        self.base = freq
        self.F0 = F0
        self.scaling_factor = scaling_factor
        self.cache = {}

    def get_cos_sin(self, D, seq_len, device, dtype):
        if (D, seq_len, device, dtype) not in self.cache:
            inv_freq = 1.0 / (self.base ** (torch.arange(0, D, 2).float().to(device) / D))
            t = torch.arange(seq_len, device=device, dtype=inv_freq.dtype)
            freqs = torch.einsum("i,j->ij", t, inv_freq).to(dtype)
            freqs = torch.cat((freqs, freqs), dim=-1)
            cos = freqs.cos()  # (Seq, Dim)
            sin = freqs.sin()
            self.cache[D, seq_len, device, dtype] = (cos, sin)
        return self.cache[D, seq_len, device, dtype]

    @staticmethod
    def rotate_half(x):
        x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2:]
        return torch.cat((-x2, x1), dim=-1)

    def apply_rope1d(self, tokens, pos1d, cos, sin):
        assert pos1d.ndim == 2
        cos = torch.nn.functional.embedding(pos1d, cos)[:, :, None, :]
        sin = torch.nn.functional.embedding(pos1d, sin)[:, :, None, :]
        return (tokens * cos) + (self.rotate_half(tokens) * sin)

    def __call__(self, tokens, positions):
        """
        input:
            * tokens: batch_size x ntokens x nheads x dim
            * positions: batch_size x ntokens (t position of each token)
        output:
            * tokens after applying RoPE2D (batch_size x ntokens x nheads x dim)
        """
        D = tokens.size(3)
        assert positions.ndim == 2  # Batch, Seq
        cos, sin = self.get_cos_sin(D, int(positions.max()) + 1, tokens.device, tokens.dtype)
        tokens = self.apply_rope1d(tokens, positions, cos, sin)
        return tokens


class RoPE3D(RoPE1D):
    def __init__(self, freq=1e4, F0=1.0, scaling_factor=1.0):
        super(RoPE3D, self).__init__(freq, F0, scaling_factor)
        self.position_cache = {}

    def get_mesh_3d(self, rope_positions, bsz):
        f, h, w = rope_positions

        if f"{f}-{h}-{w}" not in self.position_cache:
            x = torch.arange(f, device='cpu')
            y = torch.arange(h, device='cpu')
            z = torch.arange(w, device='cpu')
            self.position_cache[f"{f}-{h}-{w}"] = torch.cartesian_prod(x, y, z).view(1, f*h*w, 3).expand(bsz, -1, 3)
        return self.position_cache[f"{f}-{h}-{w}"]
     
    def __call__(self, tokens, rope_positions, ch_split, parallel=False):
        """
        input:
            * tokens: batch_size x ntokens x nheads x dim
            * rope_positions: list of (f, h, w)
        output:
            * tokens after applying RoPE2D (batch_size x ntokens x nheads x dim)
        """
        assert sum(ch_split) == tokens.size(-1); 

        mesh_grid = self.get_mesh_3d(rope_positions, bsz=tokens.shape[0])
        out = []
        for i, (D, x) in enumerate(zip(ch_split, torch.split(tokens, ch_split, dim=-1))):
            cos, sin = self.get_cos_sin(D, int(mesh_grid.max()) + 1, tokens.device, tokens.dtype)
            
            if parallel:
                pass
            else:
                mesh = mesh_grid[:, :, i].clone()
            x = self.apply_rope1d(x, mesh.to(tokens.device), cos, sin)
            out.append(x)
            
        tokens = torch.cat(out, dim=-1)
        return tokens


class SelfAttention(Attention):
    def __init__(self, hidden_dim, head_dim, bias=False, with_rope=True, with_qk_norm=True, attn_type='torch'):
        super().__init__()
        self.head_dim = head_dim
        self.n_heads = hidden_dim // head_dim
        
        self.wqkv = nn.Linear(hidden_dim, hidden_dim*3, bias=bias)
        self.wo = nn.Linear(hidden_dim, hidden_dim, bias=bias)
        
        self.with_rope = with_rope
        self.with_qk_norm = with_qk_norm
        if self.with_qk_norm:
            self.q_norm = RMSNorm(head_dim, elementwise_affine=True)
            self.k_norm = RMSNorm(head_dim, elementwise_affine=True)
        
        if self.with_rope:
            self.rope_3d = RoPE3D(freq=1e4, F0=1.0, scaling_factor=1.0)
            self.rope_ch_split = [64, 32, 32]
        
        self.core_attention = self.attn_processor(attn_type=attn_type)
        self.parallel = attn_type=='parallel'
        
    def apply_rope3d(self, x, fhw_positions, rope_ch_split, parallel=True):
        x = self.rope_3d(x, fhw_positions, rope_ch_split, parallel)
        return x
        
    def forward(
        self, 
        x,
        cu_seqlens=None,
        max_seqlen=None,
        rope_positions=None,
        attn_mask=None
    ):
        xqkv = self.wqkv(x) 
        xqkv = xqkv.view(*x.shape[:-1], self.n_heads, 3*self.head_dim)

        xq, xk, xv = torch.split(xqkv, [self.head_dim]*3, dim=-1)  ## seq_len, n, dim
    
        if self.with_qk_norm:
            xq = self.q_norm(xq)
            xk = self.k_norm(xk)
    
        if self.with_rope:
            xq = self.apply_rope3d(xq, rope_positions, self.rope_ch_split, parallel=self.parallel)
            xk = self.apply_rope3d(xk, rope_positions, self.rope_ch_split, parallel=self.parallel)
            
        output = self.core_attention(
                    xq,
                    xk,
                    xv,
                    cu_seqlens=cu_seqlens,
                    max_seqlen=max_seqlen,
                    attn_mask=attn_mask
                )
        output = rearrange(output, 'b s h d -> b s (h d)')
        output = self.wo(output)
        
        return output
    
    
class CrossAttention(Attention):
    def __init__(self, hidden_dim, head_dim, bias=False, with_qk_norm=True, attn_type='torch'):
        super().__init__()
        self.head_dim = head_dim
        self.n_heads = hidden_dim // head_dim
        
        self.wq = nn.Linear(hidden_dim, hidden_dim, bias=bias)
        self.wkv = nn.Linear(hidden_dim, hidden_dim*2, bias=bias)
        self.wo = nn.Linear(hidden_dim, hidden_dim, bias=bias)
        
        self.with_qk_norm = with_qk_norm
        if self.with_qk_norm:
            self.q_norm = RMSNorm(head_dim, elementwise_affine=True)
            self.k_norm = RMSNorm(head_dim, elementwise_affine=True)
        
        self.core_attention = self.attn_processor(attn_type=attn_type)

    def forward(
            self, 
            x: torch.Tensor,
            encoder_hidden_states: torch.Tensor,
            attn_mask=None
        ):
        xq = self.wq(x) 
        xq = xq.view(*xq.shape[:-1], self.n_heads, self.head_dim)
        
        xkv = self.wkv(encoder_hidden_states)
        xkv = xkv.view(*xkv.shape[:-1], self.n_heads, 2*self.head_dim)

        xk, xv = torch.split(xkv, [self.head_dim]*2, dim=-1)  ## seq_len, n, dim
    
        if self.with_qk_norm:
            xq = self.q_norm(xq)
            xk = self.k_norm(xk)

        output = self.core_attention(
                    xq,
                    xk,
                    xv,
                    attn_mask=attn_mask
                )
        
        output = rearrange(output, 'b s h d -> b s (h d)')
        output = self.wo(output)
        
        return output

    
class GELU(nn.Module):
    r"""
    GELU activation function with tanh approximation support with `approximate="tanh"`.

    Parameters:
        dim_in (`int`): The number of channels in the input.
        dim_out (`int`): The number of channels in the output.
        approximate (`str`, *optional*, defaults to `"none"`): If `"tanh"`, use tanh approximation.
        bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
    """

    def __init__(self, dim_in: int, dim_out: int, approximate: str = "none", bias: bool = True):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out, bias=bias)
        self.approximate = approximate

    def gelu(self, gate: torch.Tensor) -> torch.Tensor:
        return torch.nn.functional.gelu(gate, approximate=self.approximate)

    def forward(self, hidden_states):
        hidden_states = self.proj(hidden_states)
        hidden_states = self.gelu(hidden_states)
        return hidden_states
    
    
class FeedForward(nn.Module):
    def __init__(
        self, 
        dim: int,
        inner_dim: Optional[int] = None,
        dim_out: Optional[int] = None,
        mult: int = 4,
        bias: bool = False,
    ):
        super().__init__()
        inner_dim = dim*mult if inner_dim is None else inner_dim
        dim_out = dim if dim_out is None else dim_out
        self.net = nn.ModuleList([
            GELU(dim, inner_dim, approximate="tanh", bias=bias),
            nn.Identity(),
            nn.Linear(inner_dim, dim_out, bias=bias)
        ])
        
        
    def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor:
        for module in self.net:
            hidden_states = module(hidden_states)
        return hidden_states
    

def modulate(x, scale, shift):
    x = x * (1 + scale) + shift
    return x


def gate(x, gate):
    x = gate * x
    return x


class StepVideoTransformerBlock(nn.Module):
    r"""
    A basic Transformer block.

    Parameters:
        dim (`int`): The number of channels in the input and output.
        num_attention_heads (`int`): The number of heads to use for multi-head attention.
        attention_head_dim (`int`): The number of channels in each head.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
        num_embeds_ada_norm (:
            obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
        attention_bias (:
            obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
        only_cross_attention (`bool`, *optional*):
            Whether to use only cross-attention layers. In this case two cross attention layers are used.
        double_self_attention (`bool`, *optional*):
            Whether to use two self-attention layers. In this case no cross attention layers are used.
        upcast_attention (`bool`, *optional*):
            Whether to upcast the attention computation to float32. This is useful for mixed precision training.
        norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
            Whether to use learnable elementwise affine parameters for normalization.
        norm_type (`str`, *optional*, defaults to `"layer_norm"`):
            The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
        final_dropout (`bool` *optional*, defaults to False):
            Whether to apply a final dropout after the last feed-forward layer.
        attention_type (`str`, *optional*, defaults to `"default"`):
            The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
        positional_embeddings (`str`, *optional*, defaults to `None`):
            The type of positional embeddings to apply to.
        num_positional_embeddings (`int`, *optional*, defaults to `None`):
            The maximum number of positional embeddings to apply.
    """

    def __init__(
        self,
        dim: int,
        attention_head_dim: int,
        norm_eps: float = 1e-5,
        ff_inner_dim: Optional[int] = None,
        ff_bias: bool = False,
        attention_type: str = 'parallel'
    ):
        super().__init__()
        self.dim = dim
        self.norm1 = nn.LayerNorm(dim, eps=norm_eps)
        self.attn1 = SelfAttention(dim, attention_head_dim, bias=False, with_rope=True, with_qk_norm=True, attn_type=attention_type)
        
        self.norm2 = nn.LayerNorm(dim, eps=norm_eps)
        self.attn2 = CrossAttention(dim, attention_head_dim, bias=False, with_qk_norm=True, attn_type='torch')

        self.ff = FeedForward(dim=dim, inner_dim=ff_inner_dim, dim_out=dim, bias=ff_bias)

        self.scale_shift_table = nn.Parameter(torch.randn(6, dim) /dim**0.5)

    @torch.no_grad()
    def forward(
        self,
        q: torch.Tensor,
        kv: Optional[torch.Tensor] = None,
        timestep: Optional[torch.LongTensor] =  None,
        attn_mask = None,
        rope_positions: list = None, 
    ) -> torch.Tensor:
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
            torch.clone(chunk) for chunk in (self.scale_shift_table[None].to(dtype=q.dtype, device=q.device) + timestep.reshape(-1, 6, self.dim)).chunk(6, dim=1)
        )
        
        scale_shift_q = modulate(self.norm1(q), scale_msa, shift_msa)

        attn_q = self.attn1(
            scale_shift_q,
            rope_positions=rope_positions
        )

        q = gate(attn_q, gate_msa) + q
        
        attn_q = self.attn2(
                q,
                kv,
                attn_mask
            )

        q = attn_q + q

        scale_shift_q = modulate(self.norm2(q), scale_mlp, shift_mlp)

        ff_output = self.ff(scale_shift_q)
        
        q = gate(ff_output, gate_mlp) + q
        
        return q
    
    
class PatchEmbed(nn.Module):
    """2D Image to Patch Embedding"""

    def __init__(
        self,
        patch_size=64,
        in_channels=3,
        embed_dim=768,
        layer_norm=False,
        flatten=True,
        bias=True,
    ):
        super().__init__()

        self.flatten = flatten
        self.layer_norm = layer_norm

        self.proj = nn.Conv2d(
            in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias
        )

    def forward(self, latent):
        latent = self.proj(latent).to(latent.dtype)   
        if self.flatten:
            latent = latent.flatten(2).transpose(1, 2)  # BCHW -> BNC
        if self.layer_norm:
            latent = self.norm(latent)

        return latent


class StepVideoModel(torch.nn.Module):
    def __init__(
        self,
        num_attention_heads: int = 48,
        attention_head_dim: int = 128,
        in_channels: int = 64,
        out_channels: Optional[int] = 64,
        num_layers: int = 48,
        dropout: float = 0.0,
        patch_size: int = 1,
        norm_type: str = "ada_norm_single",
        norm_elementwise_affine: bool = False,
        norm_eps: float = 1e-6,
        use_additional_conditions: Optional[bool] = False,
        caption_channels: Optional[Union[int, List, Tuple]] = [6144, 1024],
        attention_type: Optional[str] = "torch",
    ):
        super().__init__()

        # Set some common variables used across the board.
        self.inner_dim = num_attention_heads * attention_head_dim
        self.out_channels = in_channels if out_channels is None else out_channels

        self.use_additional_conditions = use_additional_conditions

        self.pos_embed = PatchEmbed(
            patch_size=patch_size,
            in_channels=in_channels,
            embed_dim=self.inner_dim,
        )

        self.transformer_blocks = nn.ModuleList(
            [
                StepVideoTransformerBlock(
                    dim=self.inner_dim,
                    attention_head_dim=attention_head_dim,
                    attention_type=attention_type
                )
                for _ in range(num_layers)
            ]
        )

        # 3. Output blocks.
        self.norm_out = nn.LayerNorm(self.inner_dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine)
        self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim**0.5)
        self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels)
        self.patch_size = patch_size

        self.adaln_single = AdaLayerNormSingle(
            self.inner_dim, use_additional_conditions=self.use_additional_conditions
        )

        if isinstance(caption_channels, int):
            caption_channel = caption_channels
        else:
            caption_channel, clip_channel = caption_channels
            self.clip_projection = nn.Linear(clip_channel, self.inner_dim) 

        self.caption_norm = nn.LayerNorm(caption_channel,  eps=norm_eps, elementwise_affine=norm_elementwise_affine)
        
        self.caption_projection = PixArtAlphaTextProjection(
            in_features=caption_channel, hidden_size=self.inner_dim
        )
        
        self.parallel = attention_type=='parallel'

    def patchfy(self, hidden_states):
        hidden_states = rearrange(hidden_states, 'b f c h w -> (b f) c h w')
        hidden_states = self.pos_embed(hidden_states)
        return hidden_states

    def prepare_attn_mask(self, encoder_attention_mask, encoder_hidden_states, q_seqlen):
        kv_seqlens = encoder_attention_mask.sum(dim=1).int()
        mask = torch.zeros([len(kv_seqlens), q_seqlen, max(kv_seqlens)], dtype=torch.bool, device=encoder_attention_mask.device)
        encoder_hidden_states = encoder_hidden_states[:,: max(kv_seqlens)]
        for i, kv_len in enumerate(kv_seqlens):
            mask[i, :, :kv_len] = 1
        return encoder_hidden_states, mask
        
        
    def block_forward(
        self,
        hidden_states,
        encoder_hidden_states=None,
        timestep=None,
        rope_positions=None,
        attn_mask=None,
        parallel=True
    ):
        for block in tqdm(self.transformer_blocks, desc="Transformer blocks"):
            hidden_states = block(
                hidden_states,
                encoder_hidden_states,
                timestep=timestep,
                attn_mask=attn_mask,
                rope_positions=rope_positions
            )

        return hidden_states
        

    @torch.inference_mode()
    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_hidden_states_2: Optional[torch.Tensor] = None,
        timestep: Optional[torch.LongTensor] = None,
        added_cond_kwargs: Dict[str, torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        fps: torch.Tensor=None,
        return_dict: bool = False,
    ):
        assert hidden_states.ndim==5; "hidden_states's shape should be (bsz, f, ch, h ,w)"

        bsz, frame, _, height, width = hidden_states.shape
        height, width = height // self.patch_size, width // self.patch_size
                
        hidden_states = self.patchfy(hidden_states) 
        len_frame = hidden_states.shape[1]
                
        if self.use_additional_conditions:
            added_cond_kwargs = {
                "resolution": torch.tensor([(height, width)]*bsz, device=hidden_states.device, dtype=hidden_states.dtype),
                "nframe": torch.tensor([frame]*bsz, device=hidden_states.device, dtype=hidden_states.dtype),
                "fps": fps
            }    
        else:
            added_cond_kwargs = {}
        
        timestep, embedded_timestep = self.adaln_single(
            timestep, added_cond_kwargs=added_cond_kwargs
        )

        encoder_hidden_states = self.caption_projection(self.caption_norm(encoder_hidden_states))
        
        if encoder_hidden_states_2 is not None and hasattr(self, 'clip_projection'):
            clip_embedding = self.clip_projection(encoder_hidden_states_2)
            encoder_hidden_states = torch.cat([clip_embedding, encoder_hidden_states], dim=1)

        hidden_states = rearrange(hidden_states, '(b f) l d->  b (f l) d', b=bsz, f=frame, l=len_frame).contiguous()
        encoder_hidden_states, attn_mask = self.prepare_attn_mask(encoder_attention_mask, encoder_hidden_states, q_seqlen=frame*len_frame)
        
        hidden_states = self.block_forward(
            hidden_states,
            encoder_hidden_states,
            timestep=timestep,
            rope_positions=[frame, height, width],
            attn_mask=attn_mask,
            parallel=self.parallel
        )
        
        hidden_states = rearrange(hidden_states, 'b (f l) d -> (b f) l d', b=bsz, f=frame, l=len_frame)
        
        embedded_timestep = repeat(embedded_timestep, 'b d -> (b f) d', f=frame).contiguous()
        
        shift, scale = (self.scale_shift_table[None].to(dtype=embedded_timestep.dtype, device=embedded_timestep.device) + embedded_timestep[:, None]).chunk(2, dim=1)
        hidden_states = self.norm_out(hidden_states)
        # Modulation
        hidden_states = hidden_states * (1 + scale) + shift
        hidden_states = self.proj_out(hidden_states)
        
        # unpatchify
        hidden_states = hidden_states.reshape(
            shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
        )
        
        hidden_states = rearrange(hidden_states, 'n h w p q c -> n c h p w q')
        output = hidden_states.reshape(
            shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
        )

        output = rearrange(output, '(b f) c h w -> b f c h w', f=frame)

        if return_dict:
            return {'x': output}
        return output
    
    @staticmethod
    def state_dict_converter():
        return StepVideoDiTStateDictConverter()


class StepVideoDiTStateDictConverter:
    def __init__(self):
        super().__init__()

    def from_diffusers(self, state_dict):
        return state_dict
    
    def from_civitai(self, state_dict):
        return state_dict