File size: 19,703 Bytes
4bf9661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from typing import Tuple, Optional
from einops import rearrange
from .utils import hash_state_dict_keys
try:
    import flash_attn_interface
    FLASH_ATTN_3_AVAILABLE = True
except ModuleNotFoundError:
    FLASH_ATTN_3_AVAILABLE = False

try:
    import flash_attn
    FLASH_ATTN_2_AVAILABLE = True
except ModuleNotFoundError:
    FLASH_ATTN_2_AVAILABLE = False

try:
    from sageattention import sageattn
    SAGE_ATTN_AVAILABLE = True
except ModuleNotFoundError:
    SAGE_ATTN_AVAILABLE = False
    
    
def flash_attention(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, num_heads: int, compatibility_mode=False):
    if compatibility_mode:
        q = rearrange(q, "b s (n d) -> b n s d", n=num_heads)
        k = rearrange(k, "b s (n d) -> b n s d", n=num_heads)
        v = rearrange(v, "b s (n d) -> b n s d", n=num_heads)
        x = F.scaled_dot_product_attention(q, k, v)
        x = rearrange(x, "b n s d -> b s (n d)", n=num_heads)
    elif FLASH_ATTN_3_AVAILABLE:
        q = rearrange(q, "b s (n d) -> b s n d", n=num_heads)
        k = rearrange(k, "b s (n d) -> b s n d", n=num_heads)
        v = rearrange(v, "b s (n d) -> b s n d", n=num_heads)
        x = flash_attn_interface.flash_attn_func(q, k, v)
        x = rearrange(x, "b s n d -> b s (n d)", n=num_heads)
    elif FLASH_ATTN_2_AVAILABLE:
        q = rearrange(q, "b s (n d) -> b s n d", n=num_heads)
        k = rearrange(k, "b s (n d) -> b s n d", n=num_heads)
        v = rearrange(v, "b s (n d) -> b s n d", n=num_heads)
        x = flash_attn.flash_attn_func(q, k, v)
        x = rearrange(x, "b s n d -> b s (n d)", n=num_heads)
    elif SAGE_ATTN_AVAILABLE:
        q = rearrange(q, "b s (n d) -> b n s d", n=num_heads)
        k = rearrange(k, "b s (n d) -> b n s d", n=num_heads)
        v = rearrange(v, "b s (n d) -> b n s d", n=num_heads)
        x = sageattn(q, k, v)
        x = rearrange(x, "b n s d -> b s (n d)", n=num_heads)
    else:
        q = rearrange(q, "b s (n d) -> b n s d", n=num_heads)
        k = rearrange(k, "b s (n d) -> b n s d", n=num_heads)
        v = rearrange(v, "b s (n d) -> b n s d", n=num_heads)
        x = F.scaled_dot_product_attention(q, k, v)
        x = rearrange(x, "b n s d -> b s (n d)", n=num_heads)
    return x


def modulate(x: torch.Tensor, shift: torch.Tensor, scale: torch.Tensor):
    return (x * (1 + scale) + shift)


def sinusoidal_embedding_1d(dim, position):
    sinusoid = torch.outer(position.type(torch.float64), torch.pow(
        10000, -torch.arange(dim//2, dtype=torch.float64, device=position.device).div(dim//2)))
    x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1)
    return x.to(position.dtype)


def precompute_freqs_cis_3d(dim: int, end: int = 1024, theta: float = 10000.0):
    # 3d rope precompute
    f_freqs_cis = precompute_freqs_cis(dim - 2 * (dim // 3), end, theta)
    h_freqs_cis = precompute_freqs_cis(dim // 3, end, theta)
    w_freqs_cis = precompute_freqs_cis(dim // 3, end, theta)
    return f_freqs_cis, h_freqs_cis, w_freqs_cis


def precompute_freqs_cis(dim: int, end: int = 1024, theta: float = 10000.0):
    # 1d rope precompute
    freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)
                   [: (dim // 2)].double() / dim))
    freqs = torch.outer(torch.arange(end, device=freqs.device), freqs)
    freqs_cis = torch.polar(torch.ones_like(freqs), freqs)  # complex64
    return freqs_cis


def rope_apply(x, freqs, num_heads):
    x = rearrange(x, "b s (n d) -> b s n d", n=num_heads)
    x_out = torch.view_as_complex(x.to(torch.float64).reshape(
        x.shape[0], x.shape[1], x.shape[2], -1, 2))
    x_out = torch.view_as_real(x_out * freqs).flatten(2)
    return x_out.to(x.dtype)


class RMSNorm(nn.Module):
    def __init__(self, dim, eps=1e-5):
        super().__init__()
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(dim))

    def norm(self, x):
        return x * torch.rsqrt(x.pow(2).mean(dim=-1, keepdim=True) + self.eps)

    def forward(self, x):
        dtype = x.dtype
        return self.norm(x.float()).to(dtype) * self.weight


class AttentionModule(nn.Module):
    def __init__(self, num_heads):
        super().__init__()
        self.num_heads = num_heads
        
    def forward(self, q, k, v):
        x = flash_attention(q=q, k=k, v=v, num_heads=self.num_heads)
        return x


class SelfAttention(nn.Module):
    def __init__(self, dim: int, num_heads: int, eps: float = 1e-6):
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        self.head_dim = dim // num_heads

        self.q = nn.Linear(dim, dim)
        self.k = nn.Linear(dim, dim)
        self.v = nn.Linear(dim, dim)
        self.o = nn.Linear(dim, dim)
        self.norm_q = RMSNorm(dim, eps=eps)
        self.norm_k = RMSNorm(dim, eps=eps)
        
        self.attn = AttentionModule(self.num_heads)

    def forward(self, x, freqs):
        q = self.norm_q(self.q(x))
        k = self.norm_k(self.k(x))
        v = self.v(x)
        q = rope_apply(q, freqs, self.num_heads)
        k = rope_apply(k, freqs, self.num_heads)
        x = self.attn(q, k, v)
        return self.o(x)


class CrossAttention(nn.Module):
    def __init__(self, dim: int, num_heads: int, eps: float = 1e-6, has_image_input: bool = False):
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        self.head_dim = dim // num_heads

        self.q = nn.Linear(dim, dim)
        self.k = nn.Linear(dim, dim)
        self.v = nn.Linear(dim, dim)
        self.o = nn.Linear(dim, dim)
        self.norm_q = RMSNorm(dim, eps=eps)
        self.norm_k = RMSNorm(dim, eps=eps)
        self.has_image_input = has_image_input
        if has_image_input:
            self.k_img = nn.Linear(dim, dim)
            self.v_img = nn.Linear(dim, dim)
            self.norm_k_img = RMSNorm(dim, eps=eps)
            
        self.attn = AttentionModule(self.num_heads)

    def forward(self, x: torch.Tensor, y: torch.Tensor):
        if self.has_image_input:
            img = y[:, :257]
            ctx = y[:, 257:]
        else:
            ctx = y
        q = self.norm_q(self.q(x))
        k = self.norm_k(self.k(ctx))
        v = self.v(ctx)
        x = self.attn(q, k, v)
        if self.has_image_input:
            k_img = self.norm_k_img(self.k_img(img))
            v_img = self.v_img(img)
            y = flash_attention(q, k_img, v_img, num_heads=self.num_heads)
            x = x + y
        return self.o(x)


class DiTBlock(nn.Module):
    def __init__(self, has_image_input: bool, dim: int, num_heads: int, ffn_dim: int, eps: float = 1e-6):
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        self.ffn_dim = ffn_dim

        self.self_attn = SelfAttention(dim, num_heads, eps)
        self.cross_attn = CrossAttention(
            dim, num_heads, eps, has_image_input=has_image_input)
        self.norm1 = nn.LayerNorm(dim, eps=eps, elementwise_affine=False)
        self.norm2 = nn.LayerNorm(dim, eps=eps, elementwise_affine=False)
        self.norm3 = nn.LayerNorm(dim, eps=eps)
        self.ffn = nn.Sequential(nn.Linear(dim, ffn_dim), nn.GELU(
            approximate='tanh'), nn.Linear(ffn_dim, dim))
        self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5)

    def forward(self, x, context, cam_emb, t_mod, freqs):
        # msa: multi-head self-attention  mlp: multi-layer perceptron
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
            self.modulation.to(dtype=t_mod.dtype, device=t_mod.device) + t_mod).chunk(6, dim=1)
        input_x = modulate(self.norm1(x), shift_msa, scale_msa)

        # encode camera
        cam_emb = self.cam_encoder(cam_emb)
        cam_emb = cam_emb.repeat(1, 2, 1)
        cam_emb = cam_emb.unsqueeze(2).unsqueeze(3).repeat(1, 1, 30, 52, 1)
        cam_emb = rearrange(cam_emb, 'b f h w d -> b (f h w) d')
        input_x = input_x + cam_emb
        x = x + gate_msa * self.projector(self.self_attn(input_x, freqs))
        
        x = x + self.cross_attn(self.norm3(x), context)
        input_x = modulate(self.norm2(x), shift_mlp, scale_mlp)
        x = x + gate_mlp * self.ffn(input_x)
        return x


class MLP(torch.nn.Module):
    def __init__(self, in_dim, out_dim):
        super().__init__()
        self.proj = torch.nn.Sequential(
            nn.LayerNorm(in_dim),
            nn.Linear(in_dim, in_dim),
            nn.GELU(),
            nn.Linear(in_dim, out_dim),
            nn.LayerNorm(out_dim)
        )

    def forward(self, x):
        return self.proj(x)


class Head(nn.Module):
    def __init__(self, dim: int, out_dim: int, patch_size: Tuple[int, int, int], eps: float):
        super().__init__()
        self.dim = dim
        self.patch_size = patch_size
        self.norm = nn.LayerNorm(dim, eps=eps, elementwise_affine=False)
        self.head = nn.Linear(dim, out_dim * math.prod(patch_size))
        self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim**0.5)

    def forward(self, x, t_mod):
        shift, scale = (self.modulation.to(dtype=t_mod.dtype, device=t_mod.device) + t_mod).chunk(2, dim=1)
        x = (self.head(self.norm(x) * (1 + scale) + shift))
        return x


class WanModel(torch.nn.Module):
    def __init__(
        self,
        dim: int,
        in_dim: int,
        ffn_dim: int,
        out_dim: int,
        text_dim: int,
        freq_dim: int,
        eps: float,
        patch_size: Tuple[int, int, int],
        num_heads: int,
        num_layers: int,
        has_image_input: bool,
    ):
        super().__init__()
        self.dim = dim
        self.freq_dim = freq_dim
        self.has_image_input = has_image_input
        self.patch_size = patch_size

        self.patch_embedding = nn.Conv3d(
            in_dim, dim, kernel_size=patch_size, stride=patch_size)
        self.text_embedding = nn.Sequential(
            nn.Linear(text_dim, dim),
            nn.GELU(approximate='tanh'),
            nn.Linear(dim, dim)
        )
        self.time_embedding = nn.Sequential(
            nn.Linear(freq_dim, dim),
            nn.SiLU(),
            nn.Linear(dim, dim)
        )
        self.time_projection = nn.Sequential(
            nn.SiLU(), nn.Linear(dim, dim * 6))
        self.blocks = nn.ModuleList([
            DiTBlock(has_image_input, dim, num_heads, ffn_dim, eps)
            for _ in range(num_layers)
        ])
        self.head = Head(dim, out_dim, patch_size, eps)
        head_dim = dim // num_heads
        self.freqs = precompute_freqs_cis_3d(head_dim)

        if has_image_input:
            self.img_emb = MLP(1280, dim)  # clip_feature_dim = 1280

    def patchify(self, x: torch.Tensor):
        x = self.patch_embedding(x)
        grid_size = x.shape[2:]
        x = rearrange(x, 'b c f h w -> b (f h w) c').contiguous()
        return x, grid_size  # x, grid_size: (f, h, w)

    def unpatchify(self, x: torch.Tensor, grid_size: torch.Tensor):
        return rearrange(
            x, 'b (f h w) (x y z c) -> b c (f x) (h y) (w z)',
            f=grid_size[0], h=grid_size[1], w=grid_size[2], 
            x=self.patch_size[0], y=self.patch_size[1], z=self.patch_size[2]
        )

    def forward(self,
                x: torch.Tensor,
                timestep: torch.Tensor,
                cam_emb: torch.Tensor,
                context: torch.Tensor,
                clip_feature: Optional[torch.Tensor] = None,
                y: Optional[torch.Tensor] = None,
                use_gradient_checkpointing: bool = False,
                use_gradient_checkpointing_offload: bool = False,
                **kwargs,
                ):
        t = self.time_embedding(
            sinusoidal_embedding_1d(self.freq_dim, timestep))
        t_mod = self.time_projection(t).unflatten(1, (6, self.dim))
        context = self.text_embedding(context)
        
        if self.has_image_input:
            x = torch.cat([x, y], dim=1)  # (b, c_x + c_y, f, h, w)
            clip_embdding = self.img_emb(clip_feature)
            context = torch.cat([clip_embdding, context], dim=1)
        
        x, (f, h, w) = self.patchify(x)
        
        freqs = torch.cat([
            self.freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
            self.freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
            self.freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1)
        ], dim=-1).reshape(f * h * w, 1, -1).to(x.device)
        
        def create_custom_forward(module):
            def custom_forward(*inputs):
                return module(*inputs)
            return custom_forward

        for block in self.blocks:
            if self.training and use_gradient_checkpointing:
                if use_gradient_checkpointing_offload:
                    with torch.autograd.graph.save_on_cpu():
                        x = torch.utils.checkpoint.checkpoint(
                            create_custom_forward(block),
                            x, context, cam_emb, t_mod, freqs,
                            use_reentrant=False,
                        )
                else:
                    x = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(block),
                        x, context, cam_emb, t_mod, freqs,
                        use_reentrant=False,
                    )
            else:
                x = block(x, context, cam_emb, t_mod, freqs)

        x = self.head(x, t)
        x = self.unpatchify(x, (f, h, w))
        return x

    @staticmethod
    def state_dict_converter():
        return WanModelStateDictConverter()
    
    
class WanModelStateDictConverter:
    def __init__(self):
        pass

    def from_diffusers(self, state_dict):
        rename_dict = {
            "blocks.0.attn1.norm_k.weight": "blocks.0.self_attn.norm_k.weight",
            "blocks.0.attn1.norm_q.weight": "blocks.0.self_attn.norm_q.weight",
            "blocks.0.attn1.to_k.bias": "blocks.0.self_attn.k.bias",
            "blocks.0.attn1.to_k.weight": "blocks.0.self_attn.k.weight",
            "blocks.0.attn1.to_out.0.bias": "blocks.0.self_attn.o.bias",
            "blocks.0.attn1.to_out.0.weight": "blocks.0.self_attn.o.weight",
            "blocks.0.attn1.to_q.bias": "blocks.0.self_attn.q.bias",
            "blocks.0.attn1.to_q.weight": "blocks.0.self_attn.q.weight",
            "blocks.0.attn1.to_v.bias": "blocks.0.self_attn.v.bias",
            "blocks.0.attn1.to_v.weight": "blocks.0.self_attn.v.weight",
            "blocks.0.attn2.norm_k.weight": "blocks.0.cross_attn.norm_k.weight",
            "blocks.0.attn2.norm_q.weight": "blocks.0.cross_attn.norm_q.weight",
            "blocks.0.attn2.to_k.bias": "blocks.0.cross_attn.k.bias",
            "blocks.0.attn2.to_k.weight": "blocks.0.cross_attn.k.weight",
            "blocks.0.attn2.to_out.0.bias": "blocks.0.cross_attn.o.bias",
            "blocks.0.attn2.to_out.0.weight": "blocks.0.cross_attn.o.weight",
            "blocks.0.attn2.to_q.bias": "blocks.0.cross_attn.q.bias",
            "blocks.0.attn2.to_q.weight": "blocks.0.cross_attn.q.weight",
            "blocks.0.attn2.to_v.bias": "blocks.0.cross_attn.v.bias",
            "blocks.0.attn2.to_v.weight": "blocks.0.cross_attn.v.weight",
            "blocks.0.ffn.net.0.proj.bias": "blocks.0.ffn.0.bias",
            "blocks.0.ffn.net.0.proj.weight": "blocks.0.ffn.0.weight",
            "blocks.0.ffn.net.2.bias": "blocks.0.ffn.2.bias",
            "blocks.0.ffn.net.2.weight": "blocks.0.ffn.2.weight",
            "blocks.0.norm2.bias": "blocks.0.norm3.bias",
            "blocks.0.norm2.weight": "blocks.0.norm3.weight",
            "blocks.0.scale_shift_table": "blocks.0.modulation",
            "condition_embedder.text_embedder.linear_1.bias": "text_embedding.0.bias",
            "condition_embedder.text_embedder.linear_1.weight": "text_embedding.0.weight",
            "condition_embedder.text_embedder.linear_2.bias": "text_embedding.2.bias",
            "condition_embedder.text_embedder.linear_2.weight": "text_embedding.2.weight",
            "condition_embedder.time_embedder.linear_1.bias": "time_embedding.0.bias",
            "condition_embedder.time_embedder.linear_1.weight": "time_embedding.0.weight",
            "condition_embedder.time_embedder.linear_2.bias": "time_embedding.2.bias",
            "condition_embedder.time_embedder.linear_2.weight": "time_embedding.2.weight",
            "condition_embedder.time_proj.bias": "time_projection.1.bias",
            "condition_embedder.time_proj.weight": "time_projection.1.weight",
            "patch_embedding.bias": "patch_embedding.bias",
            "patch_embedding.weight": "patch_embedding.weight",
            "scale_shift_table": "head.modulation",
            "proj_out.bias": "head.head.bias",
            "proj_out.weight": "head.head.weight",
        }
        state_dict_ = {}
        for name, param in state_dict.items():
            if name in rename_dict:
                state_dict_[rename_dict[name]] = param
            else:
                name_ = ".".join(name.split(".")[:1] + ["0"] + name.split(".")[2:])
                if name_ in rename_dict:
                    name_ = rename_dict[name_]
                    name_ = ".".join(name_.split(".")[:1] + [name.split(".")[1]] + name_.split(".")[2:])
                    state_dict_[name_] = param
        if hash_state_dict_keys(state_dict) == "cb104773c6c2cb6df4f9529ad5c60d0b":
            config = {
                "model_type": "t2v",
                "patch_size": (1, 2, 2),
                "text_len": 512,
                "in_dim": 16,
                "dim": 5120,
                "ffn_dim": 13824,
                "freq_dim": 256,
                "text_dim": 4096,
                "out_dim": 16,
                "num_heads": 40,
                "num_layers": 40,
                "window_size": (-1, -1),
                "qk_norm": True,
                "cross_attn_norm": True,
                "eps": 1e-6,
            }
        else:
            config = {}
        return state_dict_, config
    
    def from_civitai(self, state_dict):
        if hash_state_dict_keys(state_dict) == "9269f8db9040a9d860eaca435be61814":
            config = {
                "has_image_input": False,
                "patch_size": [1, 2, 2],
                "in_dim": 16,
                "dim": 1536,
                "ffn_dim": 8960,
                "freq_dim": 256,
                "text_dim": 4096,
                "out_dim": 16,
                "num_heads": 12,
                "num_layers": 30,
                "eps": 1e-6
            }
        elif hash_state_dict_keys(state_dict) == "aafcfd9672c3a2456dc46e1cb6e52c70":
            config = {
                "has_image_input": False,
                "patch_size": [1, 2, 2],
                "in_dim": 16,
                "dim": 5120,
                "ffn_dim": 13824,
                "freq_dim": 256,
                "text_dim": 4096,
                "out_dim": 16,
                "num_heads": 40,
                "num_layers": 40,
                "eps": 1e-6
            }
        elif hash_state_dict_keys(state_dict) == "6bfcfb3b342cb286ce886889d519a77e":
            config = {
                "has_image_input": True,
                "patch_size": [1, 2, 2],
                "in_dim": 36,
                "dim": 5120,
                "ffn_dim": 13824,
                "freq_dim": 256,
                "text_dim": 4096,
                "out_dim": 16,
                "num_heads": 40,
                "num_layers": 40,
                "eps": 1e-6
            }
        else:
            config = {}
        return state_dict, config