File size: 29,090 Bytes
4bf9661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
from ..models import ModelManager, FluxDiT, SD3TextEncoder1, FluxTextEncoder2, FluxVAEDecoder, FluxVAEEncoder, FluxIpAdapter
from ..controlnets import FluxMultiControlNetManager, ControlNetUnit, ControlNetConfigUnit, Annotator
from ..prompters import FluxPrompter
from ..schedulers import FlowMatchScheduler
from .base import BasePipeline
from typing import List
import torch
from tqdm import tqdm
import numpy as np
from PIL import Image
from ..models.tiler import FastTileWorker
from transformers import SiglipVisionModel
from copy import deepcopy
from transformers.models.t5.modeling_t5 import T5LayerNorm, T5DenseActDense, T5DenseGatedActDense
from ..models.flux_dit import RMSNorm
from ..vram_management import enable_vram_management, AutoWrappedModule, AutoWrappedLinear


class FluxImagePipeline(BasePipeline):

    def __init__(self, device="cuda", torch_dtype=torch.float16):
        super().__init__(device=device, torch_dtype=torch_dtype, height_division_factor=16, width_division_factor=16)
        self.scheduler = FlowMatchScheduler()
        self.prompter = FluxPrompter()
        # models
        self.text_encoder_1: SD3TextEncoder1 = None
        self.text_encoder_2: FluxTextEncoder2 = None
        self.dit: FluxDiT = None
        self.vae_decoder: FluxVAEDecoder = None
        self.vae_encoder: FluxVAEEncoder = None
        self.controlnet: FluxMultiControlNetManager = None
        self.ipadapter: FluxIpAdapter = None
        self.ipadapter_image_encoder: SiglipVisionModel = None
        self.model_names = ['text_encoder_1', 'text_encoder_2', 'dit', 'vae_decoder', 'vae_encoder', 'controlnet', 'ipadapter', 'ipadapter_image_encoder']


    def enable_vram_management(self, num_persistent_param_in_dit=None):
        dtype = next(iter(self.text_encoder_1.parameters())).dtype
        enable_vram_management(
            self.text_encoder_1,
            module_map = {
                torch.nn.Linear: AutoWrappedLinear,
                torch.nn.Embedding: AutoWrappedModule,
                torch.nn.LayerNorm: AutoWrappedModule,
            },
            module_config = dict(
                offload_dtype=dtype,
                offload_device="cpu",
                onload_dtype=dtype,
                onload_device="cpu",
                computation_dtype=self.torch_dtype,
                computation_device=self.device,
            ),
        )
        dtype = next(iter(self.text_encoder_2.parameters())).dtype
        enable_vram_management(
            self.text_encoder_2,
            module_map = {
                torch.nn.Linear: AutoWrappedLinear,
                torch.nn.Embedding: AutoWrappedModule,
                T5LayerNorm: AutoWrappedModule,
                T5DenseActDense: AutoWrappedModule,
                T5DenseGatedActDense: AutoWrappedModule,
            },
            module_config = dict(
                offload_dtype=dtype,
                offload_device="cpu",
                onload_dtype=dtype,
                onload_device="cpu",
                computation_dtype=self.torch_dtype,
                computation_device=self.device,
            ),
        )
        dtype = next(iter(self.dit.parameters())).dtype
        enable_vram_management(
            self.dit,
            module_map = {
                RMSNorm: AutoWrappedModule,
                torch.nn.Linear: AutoWrappedLinear,
            },
            module_config = dict(
                offload_dtype=dtype,
                offload_device="cpu",
                onload_dtype=dtype,
                onload_device="cuda",
                computation_dtype=self.torch_dtype,
                computation_device=self.device,
            ),
            max_num_param=num_persistent_param_in_dit,
            overflow_module_config = dict(
                offload_dtype=dtype,
                offload_device="cpu",
                onload_dtype=dtype,
                onload_device="cpu",
                computation_dtype=self.torch_dtype,
                computation_device=self.device,
            ),
        )
        dtype = next(iter(self.vae_decoder.parameters())).dtype
        enable_vram_management(
            self.vae_decoder,
            module_map = {
                torch.nn.Linear: AutoWrappedLinear,
                torch.nn.Conv2d: AutoWrappedModule,
                torch.nn.GroupNorm: AutoWrappedModule,
            },
            module_config = dict(
                offload_dtype=dtype,
                offload_device="cpu",
                onload_dtype=dtype,
                onload_device="cpu",
                computation_dtype=self.torch_dtype,
                computation_device=self.device,
            ),
        )
        dtype = next(iter(self.vae_encoder.parameters())).dtype
        enable_vram_management(
            self.vae_encoder,
            module_map = {
                torch.nn.Linear: AutoWrappedLinear,
                torch.nn.Conv2d: AutoWrappedModule,
                torch.nn.GroupNorm: AutoWrappedModule,
            },
            module_config = dict(
                offload_dtype=dtype,
                offload_device="cpu",
                onload_dtype=dtype,
                onload_device="cpu",
                computation_dtype=self.torch_dtype,
                computation_device=self.device,
            ),
        )
        self.enable_cpu_offload()


    def denoising_model(self):
        return self.dit


    def fetch_models(self, model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[], prompt_refiner_classes=[], prompt_extender_classes=[]):
        self.text_encoder_1 = model_manager.fetch_model("sd3_text_encoder_1")
        self.text_encoder_2 = model_manager.fetch_model("flux_text_encoder_2")
        self.dit = model_manager.fetch_model("flux_dit")
        self.vae_decoder = model_manager.fetch_model("flux_vae_decoder")
        self.vae_encoder = model_manager.fetch_model("flux_vae_encoder")
        self.prompter.fetch_models(self.text_encoder_1, self.text_encoder_2)
        self.prompter.load_prompt_refiners(model_manager, prompt_refiner_classes)
        self.prompter.load_prompt_extenders(model_manager, prompt_extender_classes)

        # ControlNets
        controlnet_units = []
        for config in controlnet_config_units:
            controlnet_unit = ControlNetUnit(
                Annotator(config.processor_id, device=self.device, skip_processor=config.skip_processor),
                model_manager.fetch_model("flux_controlnet", config.model_path),
                config.scale
            )
            controlnet_units.append(controlnet_unit)
        self.controlnet = FluxMultiControlNetManager(controlnet_units)

        # IP-Adapters
        self.ipadapter = model_manager.fetch_model("flux_ipadapter")
        self.ipadapter_image_encoder = model_manager.fetch_model("siglip_vision_model")


    @staticmethod
    def from_model_manager(model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[], prompt_refiner_classes=[], prompt_extender_classes=[], device=None, torch_dtype=None):
        pipe = FluxImagePipeline(
            device=model_manager.device if device is None else device,
            torch_dtype=model_manager.torch_dtype if torch_dtype is None else torch_dtype,
        )
        pipe.fetch_models(model_manager, controlnet_config_units, prompt_refiner_classes, prompt_extender_classes)
        return pipe
    

    def encode_image(self, image, tiled=False, tile_size=64, tile_stride=32):
        latents = self.vae_encoder(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
        return latents
    

    def decode_image(self, latent, tiled=False, tile_size=64, tile_stride=32):
        image = self.vae_decoder(latent.to(self.device), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
        image = self.vae_output_to_image(image)
        return image
    

    def encode_prompt(self, prompt, positive=True, t5_sequence_length=512):
        prompt_emb, pooled_prompt_emb, text_ids = self.prompter.encode_prompt(
            prompt, device=self.device, positive=positive, t5_sequence_length=t5_sequence_length
        )
        return {"prompt_emb": prompt_emb, "pooled_prompt_emb": pooled_prompt_emb, "text_ids": text_ids}
    

    def prepare_extra_input(self, latents=None, guidance=1.0):
        latent_image_ids = self.dit.prepare_image_ids(latents)
        guidance = torch.Tensor([guidance] * latents.shape[0]).to(device=latents.device, dtype=latents.dtype)
        return {"image_ids": latent_image_ids, "guidance": guidance}
    

    def apply_controlnet_mask_on_latents(self, latents, mask):
        mask = (self.preprocess_image(mask) + 1) / 2
        mask = mask.mean(dim=1, keepdim=True)
        mask = mask.to(dtype=self.torch_dtype, device=self.device)
        mask = 1 - torch.nn.functional.interpolate(mask, size=latents.shape[-2:])
        latents = torch.concat([latents, mask], dim=1)
        return latents
    

    def apply_controlnet_mask_on_image(self, image, mask):
        mask = mask.resize(image.size)
        mask = self.preprocess_image(mask).mean(dim=[0, 1])
        image = np.array(image)
        image[mask > 0] = 0
        image = Image.fromarray(image)
        return image
    

    def prepare_controlnet_input(self, controlnet_image, controlnet_inpaint_mask, tiler_kwargs):
        if isinstance(controlnet_image, Image.Image):
            controlnet_image = [controlnet_image] * len(self.controlnet.processors)

        controlnet_frames = []
        for i in range(len(self.controlnet.processors)):
            # image annotator
            image = self.controlnet.process_image(controlnet_image[i], processor_id=i)[0]
            if controlnet_inpaint_mask is not None and self.controlnet.processors[i].processor_id == "inpaint":
                image = self.apply_controlnet_mask_on_image(image, controlnet_inpaint_mask)

            # image to tensor
            image = self.preprocess_image(image).to(device=self.device, dtype=self.torch_dtype)

            # vae encoder
            image = self.encode_image(image, **tiler_kwargs)
            if controlnet_inpaint_mask is not None and self.controlnet.processors[i].processor_id == "inpaint":
                image = self.apply_controlnet_mask_on_latents(image, controlnet_inpaint_mask)
            
            # store it
            controlnet_frames.append(image)
        return controlnet_frames


    def prepare_ipadapter_inputs(self, images, height=384, width=384):
        images = [image.convert("RGB").resize((width, height), resample=3) for image in images]
        images = [self.preprocess_image(image).to(device=self.device, dtype=self.torch_dtype) for image in images]
        return torch.cat(images, dim=0)


    def inpaint_fusion(self, latents, inpaint_latents, pred_noise, fg_mask, bg_mask, progress_id, background_weight=0.):
        # inpaint noise
        inpaint_noise = (latents - inpaint_latents) / self.scheduler.sigmas[progress_id]
        # merge noise
        weight = torch.ones_like(inpaint_noise)
        inpaint_noise[fg_mask] = pred_noise[fg_mask]
        inpaint_noise[bg_mask] += pred_noise[bg_mask] * background_weight
        weight[bg_mask] += background_weight
        inpaint_noise /= weight
        return inpaint_noise


    def preprocess_masks(self, masks, height, width, dim):
        out_masks = []
        for mask in masks:
            mask = self.preprocess_image(mask.resize((width, height), resample=Image.NEAREST)).mean(dim=1, keepdim=True) > 0
            mask = mask.repeat(1, dim, 1, 1).to(device=self.device, dtype=self.torch_dtype)
            out_masks.append(mask)
        return out_masks


    def prepare_entity_inputs(self, entity_prompts, entity_masks, width, height, t5_sequence_length=512, enable_eligen_inpaint=False):
        fg_mask, bg_mask = None, None
        if enable_eligen_inpaint:
            masks_ = deepcopy(entity_masks)
            fg_masks = torch.cat([self.preprocess_image(mask.resize((width//8, height//8))).mean(dim=1, keepdim=True) for mask in masks_])
            fg_masks = (fg_masks > 0).float()
            fg_mask = fg_masks.sum(dim=0, keepdim=True).repeat(1, 16, 1, 1) > 0
            bg_mask = ~fg_mask
        entity_masks = self.preprocess_masks(entity_masks, height//8, width//8, 1)
        entity_masks = torch.cat(entity_masks, dim=0).unsqueeze(0) # b, n_mask, c, h, w
        entity_prompts = self.encode_prompt(entity_prompts, t5_sequence_length=t5_sequence_length)['prompt_emb'].unsqueeze(0)
        return entity_prompts, entity_masks, fg_mask, bg_mask


    def prepare_latents(self, input_image, height, width, seed, tiled, tile_size, tile_stride):
        if input_image is not None:
            self.load_models_to_device(['vae_encoder'])
            image = self.preprocess_image(input_image).to(device=self.device, dtype=self.torch_dtype)
            input_latents = self.encode_image(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
            noise = self.generate_noise((1, 16, height//8, width//8), seed=seed, device=self.device, dtype=self.torch_dtype)
            latents = self.scheduler.add_noise(input_latents, noise, timestep=self.scheduler.timesteps[0])
        else:
            latents = self.generate_noise((1, 16, height//8, width//8), seed=seed, device=self.device, dtype=self.torch_dtype)
            input_latents = None
        return latents, input_latents


    def prepare_ipadapter(self, ipadapter_images, ipadapter_scale):
        if ipadapter_images is not None:
            self.load_models_to_device(['ipadapter_image_encoder'])
            ipadapter_images = self.prepare_ipadapter_inputs(ipadapter_images)
            ipadapter_image_encoding = self.ipadapter_image_encoder(ipadapter_images).pooler_output
            self.load_models_to_device(['ipadapter'])
            ipadapter_kwargs_list_posi = {"ipadapter_kwargs_list": self.ipadapter(ipadapter_image_encoding, scale=ipadapter_scale)}
            ipadapter_kwargs_list_nega = {"ipadapter_kwargs_list": self.ipadapter(torch.zeros_like(ipadapter_image_encoding))}
        else:
            ipadapter_kwargs_list_posi, ipadapter_kwargs_list_nega = {"ipadapter_kwargs_list": {}}, {"ipadapter_kwargs_list": {}}
        return ipadapter_kwargs_list_posi, ipadapter_kwargs_list_nega


    def prepare_controlnet(self, controlnet_image, masks, controlnet_inpaint_mask, tiler_kwargs, enable_controlnet_on_negative):
        if controlnet_image is not None:
            self.load_models_to_device(['vae_encoder'])
            controlnet_kwargs_posi = {"controlnet_frames": self.prepare_controlnet_input(controlnet_image, controlnet_inpaint_mask, tiler_kwargs)}
            if len(masks) > 0 and controlnet_inpaint_mask is not None:
                print("The controlnet_inpaint_mask will be overridden by masks.")
                local_controlnet_kwargs = [{"controlnet_frames": self.prepare_controlnet_input(controlnet_image, mask, tiler_kwargs)} for mask in masks]
            else:
                local_controlnet_kwargs = None
        else:
            controlnet_kwargs_posi, local_controlnet_kwargs = {"controlnet_frames": None}, [{}] * len(masks)
        controlnet_kwargs_nega = controlnet_kwargs_posi if enable_controlnet_on_negative else {}
        return controlnet_kwargs_posi, controlnet_kwargs_nega, local_controlnet_kwargs


    def prepare_eligen(self, prompt_emb_nega, eligen_entity_prompts, eligen_entity_masks, width, height, t5_sequence_length, enable_eligen_inpaint, enable_eligen_on_negative, cfg_scale):
        if eligen_entity_masks is not None:
            entity_prompt_emb_posi, entity_masks_posi, fg_mask, bg_mask = self.prepare_entity_inputs(eligen_entity_prompts, eligen_entity_masks, width, height, t5_sequence_length, enable_eligen_inpaint)
            if enable_eligen_on_negative and cfg_scale != 1.0:
                entity_prompt_emb_nega = prompt_emb_nega['prompt_emb'].unsqueeze(1).repeat(1, entity_masks_posi.shape[1], 1, 1)
                entity_masks_nega = entity_masks_posi
            else:
                entity_prompt_emb_nega, entity_masks_nega = None, None
        else:
            entity_prompt_emb_posi, entity_masks_posi, entity_prompt_emb_nega, entity_masks_nega = None, None, None, None
            fg_mask, bg_mask = None, None
        eligen_kwargs_posi = {"entity_prompt_emb": entity_prompt_emb_posi, "entity_masks": entity_masks_posi}
        eligen_kwargs_nega = {"entity_prompt_emb": entity_prompt_emb_nega, "entity_masks": entity_masks_nega}
        return eligen_kwargs_posi, eligen_kwargs_nega, fg_mask, bg_mask


    def prepare_prompts(self, prompt, local_prompts, masks, mask_scales, t5_sequence_length, negative_prompt, cfg_scale):
        # Extend prompt
        self.load_models_to_device(['text_encoder_1', 'text_encoder_2'])
        prompt, local_prompts, masks, mask_scales = self.extend_prompt(prompt, local_prompts, masks, mask_scales)

        # Encode prompts
        prompt_emb_posi = self.encode_prompt(prompt, t5_sequence_length=t5_sequence_length)
        prompt_emb_nega = self.encode_prompt(negative_prompt, positive=False, t5_sequence_length=t5_sequence_length) if cfg_scale != 1.0 else None
        prompt_emb_locals = [self.encode_prompt(prompt_local, t5_sequence_length=t5_sequence_length) for prompt_local in local_prompts]
        return prompt_emb_posi, prompt_emb_nega, prompt_emb_locals


    @torch.no_grad()
    def __call__(
        self,
        # Prompt
        prompt,
        negative_prompt="",
        cfg_scale=1.0,
        embedded_guidance=3.5,
        t5_sequence_length=512,
        # Image
        input_image=None,
        denoising_strength=1.0,
        height=1024,
        width=1024,
        seed=None,
        # Steps
        num_inference_steps=30,
        # local prompts
        local_prompts=(),
        masks=(),
        mask_scales=(),
        # ControlNet
        controlnet_image=None,
        controlnet_inpaint_mask=None,
        enable_controlnet_on_negative=False,
        # IP-Adapter
        ipadapter_images=None,
        ipadapter_scale=1.0,
        # EliGen
        eligen_entity_prompts=None,
        eligen_entity_masks=None,
        enable_eligen_on_negative=False,
        enable_eligen_inpaint=False,
        # TeaCache
        tea_cache_l1_thresh=None,
        # Tile
        tiled=False,
        tile_size=128,
        tile_stride=64,
        # Progress bar
        progress_bar_cmd=tqdm,
        progress_bar_st=None,
    ):
        height, width = self.check_resize_height_width(height, width)

        # Tiler parameters
        tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride}

        # Prepare scheduler
        self.scheduler.set_timesteps(num_inference_steps, denoising_strength)

        # Prepare latent tensors
        latents, input_latents = self.prepare_latents(input_image, height, width, seed, tiled, tile_size, tile_stride)

        # Prompt
        prompt_emb_posi, prompt_emb_nega, prompt_emb_locals = self.prepare_prompts(prompt, local_prompts, masks, mask_scales, t5_sequence_length, negative_prompt, cfg_scale)

        # Extra input
        extra_input = self.prepare_extra_input(latents, guidance=embedded_guidance)

        # Entity control
        eligen_kwargs_posi, eligen_kwargs_nega, fg_mask, bg_mask = self.prepare_eligen(prompt_emb_nega, eligen_entity_prompts, eligen_entity_masks, width, height, t5_sequence_length, enable_eligen_inpaint, enable_eligen_on_negative, cfg_scale)

        # IP-Adapter
        ipadapter_kwargs_list_posi, ipadapter_kwargs_list_nega = self.prepare_ipadapter(ipadapter_images, ipadapter_scale)

        # ControlNets
        controlnet_kwargs_posi, controlnet_kwargs_nega, local_controlnet_kwargs = self.prepare_controlnet(controlnet_image, masks, controlnet_inpaint_mask, tiler_kwargs, enable_controlnet_on_negative)

        # TeaCache
        tea_cache_kwargs = {"tea_cache": TeaCache(num_inference_steps, rel_l1_thresh=tea_cache_l1_thresh) if tea_cache_l1_thresh is not None else None}

        # Denoise
        self.load_models_to_device(['dit', 'controlnet'])
        for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)):
            timestep = timestep.unsqueeze(0).to(self.device)

            # Positive side
            inference_callback = lambda prompt_emb_posi, controlnet_kwargs: lets_dance_flux(
                dit=self.dit, controlnet=self.controlnet,
                hidden_states=latents, timestep=timestep,
                **prompt_emb_posi, **tiler_kwargs, **extra_input, **controlnet_kwargs, **ipadapter_kwargs_list_posi, **eligen_kwargs_posi, **tea_cache_kwargs,
            )
            noise_pred_posi = self.control_noise_via_local_prompts(
                prompt_emb_posi, prompt_emb_locals, masks, mask_scales, inference_callback,
                special_kwargs=controlnet_kwargs_posi, special_local_kwargs_list=local_controlnet_kwargs
            )

            # Inpaint
            if enable_eligen_inpaint:
                noise_pred_posi = self.inpaint_fusion(latents, input_latents, noise_pred_posi, fg_mask, bg_mask, progress_id)
            
            # Classifier-free guidance
            if cfg_scale != 1.0:
                # Negative side
                noise_pred_nega = lets_dance_flux(
                    dit=self.dit, controlnet=self.controlnet,
                    hidden_states=latents, timestep=timestep,
                    **prompt_emb_nega, **tiler_kwargs, **extra_input, **controlnet_kwargs_nega, **ipadapter_kwargs_list_nega, **eligen_kwargs_nega,
                )
                noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega)
            else:
                noise_pred = noise_pred_posi

            # Iterate
            latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents)

            # UI
            if progress_bar_st is not None:
                progress_bar_st.progress(progress_id / len(self.scheduler.timesteps))
        
        # Decode image
        self.load_models_to_device(['vae_decoder'])
        image = self.decode_image(latents, **tiler_kwargs)

        # Offload all models
        self.load_models_to_device([])
        return image


class TeaCache:
    def __init__(self, num_inference_steps, rel_l1_thresh):
        self.num_inference_steps = num_inference_steps
        self.step = 0
        self.accumulated_rel_l1_distance = 0
        self.previous_modulated_input = None
        self.rel_l1_thresh = rel_l1_thresh
        self.previous_residual = None
        self.previous_hidden_states = None

    def check(self, dit: FluxDiT, hidden_states, conditioning):
        inp = hidden_states.clone()
        temb_ = conditioning.clone()
        modulated_inp, _, _, _, _ = dit.blocks[0].norm1_a(inp, emb=temb_)
        if self.step == 0 or self.step == self.num_inference_steps - 1:
            should_calc = True
            self.accumulated_rel_l1_distance = 0
        else: 
            coefficients = [4.98651651e+02, -2.83781631e+02,  5.58554382e+01, -3.82021401e+00, 2.64230861e-01]
            rescale_func = np.poly1d(coefficients)
            self.accumulated_rel_l1_distance += rescale_func(((modulated_inp-self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item())
            if self.accumulated_rel_l1_distance < self.rel_l1_thresh:
                should_calc = False
            else:
                should_calc = True
                self.accumulated_rel_l1_distance = 0
        self.previous_modulated_input = modulated_inp 
        self.step += 1
        if self.step == self.num_inference_steps:
            self.step = 0
        if should_calc:
            self.previous_hidden_states = hidden_states.clone()
        return not should_calc
    
    def store(self, hidden_states):
        self.previous_residual = hidden_states - self.previous_hidden_states
        self.previous_hidden_states = None

    def update(self, hidden_states):
        hidden_states = hidden_states + self.previous_residual
        return hidden_states


def lets_dance_flux(
    dit: FluxDiT,
    controlnet: FluxMultiControlNetManager = None,
    hidden_states=None,
    timestep=None,
    prompt_emb=None,
    pooled_prompt_emb=None,
    guidance=None,
    text_ids=None,
    image_ids=None,
    controlnet_frames=None,
    tiled=False,
    tile_size=128,
    tile_stride=64,
    entity_prompt_emb=None,
    entity_masks=None,
    ipadapter_kwargs_list={},
    tea_cache: TeaCache = None,
    **kwargs
):
    if tiled:
        def flux_forward_fn(hl, hr, wl, wr):
            tiled_controlnet_frames = [f[:, :, hl: hr, wl: wr] for f in controlnet_frames] if controlnet_frames is not None else None
            return lets_dance_flux(
                dit=dit,
                controlnet=controlnet,
                hidden_states=hidden_states[:, :, hl: hr, wl: wr],
                timestep=timestep,
                prompt_emb=prompt_emb,
                pooled_prompt_emb=pooled_prompt_emb,
                guidance=guidance,
                text_ids=text_ids,
                image_ids=None,
                controlnet_frames=tiled_controlnet_frames,
                tiled=False,
                **kwargs
            )
        return FastTileWorker().tiled_forward(
            flux_forward_fn,
            hidden_states,
            tile_size=tile_size,
            tile_stride=tile_stride,
            tile_device=hidden_states.device,
            tile_dtype=hidden_states.dtype
        )


    # ControlNet
    if controlnet is not None and controlnet_frames is not None:
        controlnet_extra_kwargs = {
            "hidden_states": hidden_states,
            "timestep": timestep,
            "prompt_emb": prompt_emb,
            "pooled_prompt_emb": pooled_prompt_emb,
            "guidance": guidance,
            "text_ids": text_ids,
            "image_ids": image_ids,
            "tiled": tiled,
            "tile_size": tile_size,
            "tile_stride": tile_stride,
        }
        controlnet_res_stack, controlnet_single_res_stack = controlnet(
            controlnet_frames, **controlnet_extra_kwargs
        )

    if image_ids is None:
        image_ids = dit.prepare_image_ids(hidden_states)
    
    conditioning = dit.time_embedder(timestep, hidden_states.dtype) + dit.pooled_text_embedder(pooled_prompt_emb)
    if dit.guidance_embedder is not None:
        guidance = guidance * 1000
        conditioning = conditioning + dit.guidance_embedder(guidance, hidden_states.dtype)

    height, width = hidden_states.shape[-2:]
    hidden_states = dit.patchify(hidden_states)
    hidden_states = dit.x_embedder(hidden_states)

    if entity_prompt_emb is not None and entity_masks is not None:
        prompt_emb, image_rotary_emb, attention_mask = dit.process_entity_masks(hidden_states, prompt_emb, entity_prompt_emb, entity_masks, text_ids, image_ids)
    else:
        prompt_emb = dit.context_embedder(prompt_emb)
        image_rotary_emb = dit.pos_embedder(torch.cat((text_ids, image_ids), dim=1))
        attention_mask = None

    # TeaCache
    if tea_cache is not None:
        tea_cache_update = tea_cache.check(dit, hidden_states, conditioning)
    else:
        tea_cache_update = False

    if tea_cache_update:
        hidden_states = tea_cache.update(hidden_states)
    else:
        # Joint Blocks
        for block_id, block in enumerate(dit.blocks):
            hidden_states, prompt_emb = block(
                hidden_states,
                prompt_emb,
                conditioning,
                image_rotary_emb,
                attention_mask,
                ipadapter_kwargs_list=ipadapter_kwargs_list.get(block_id, None)
            )
            # ControlNet
            if controlnet is not None and controlnet_frames is not None:
                hidden_states = hidden_states + controlnet_res_stack[block_id]

        # Single Blocks
        hidden_states = torch.cat([prompt_emb, hidden_states], dim=1)
        num_joint_blocks = len(dit.blocks)
        for block_id, block in enumerate(dit.single_blocks):
            hidden_states, prompt_emb = block(
                hidden_states,
                prompt_emb,
                conditioning,
                image_rotary_emb,
                attention_mask,
                ipadapter_kwargs_list=ipadapter_kwargs_list.get(block_id + num_joint_blocks, None)
            )
            # ControlNet
            if controlnet is not None and controlnet_frames is not None:
                hidden_states[:, prompt_emb.shape[1]:] = hidden_states[:, prompt_emb.shape[1]:] + controlnet_single_res_stack[block_id]
        hidden_states = hidden_states[:, prompt_emb.shape[1]:]

        if tea_cache is not None:
            tea_cache.store(hidden_states)

    hidden_states = dit.final_norm_out(hidden_states, conditioning)
    hidden_states = dit.final_proj_out(hidden_states)
    hidden_states = dit.unpatchify(hidden_states, height, width)

    return hidden_states