Spaces:
Running
on
L40S
Running
on
L40S
File size: 29,090 Bytes
4bf9661 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 |
from ..models import ModelManager, FluxDiT, SD3TextEncoder1, FluxTextEncoder2, FluxVAEDecoder, FluxVAEEncoder, FluxIpAdapter
from ..controlnets import FluxMultiControlNetManager, ControlNetUnit, ControlNetConfigUnit, Annotator
from ..prompters import FluxPrompter
from ..schedulers import FlowMatchScheduler
from .base import BasePipeline
from typing import List
import torch
from tqdm import tqdm
import numpy as np
from PIL import Image
from ..models.tiler import FastTileWorker
from transformers import SiglipVisionModel
from copy import deepcopy
from transformers.models.t5.modeling_t5 import T5LayerNorm, T5DenseActDense, T5DenseGatedActDense
from ..models.flux_dit import RMSNorm
from ..vram_management import enable_vram_management, AutoWrappedModule, AutoWrappedLinear
class FluxImagePipeline(BasePipeline):
def __init__(self, device="cuda", torch_dtype=torch.float16):
super().__init__(device=device, torch_dtype=torch_dtype, height_division_factor=16, width_division_factor=16)
self.scheduler = FlowMatchScheduler()
self.prompter = FluxPrompter()
# models
self.text_encoder_1: SD3TextEncoder1 = None
self.text_encoder_2: FluxTextEncoder2 = None
self.dit: FluxDiT = None
self.vae_decoder: FluxVAEDecoder = None
self.vae_encoder: FluxVAEEncoder = None
self.controlnet: FluxMultiControlNetManager = None
self.ipadapter: FluxIpAdapter = None
self.ipadapter_image_encoder: SiglipVisionModel = None
self.model_names = ['text_encoder_1', 'text_encoder_2', 'dit', 'vae_decoder', 'vae_encoder', 'controlnet', 'ipadapter', 'ipadapter_image_encoder']
def enable_vram_management(self, num_persistent_param_in_dit=None):
dtype = next(iter(self.text_encoder_1.parameters())).dtype
enable_vram_management(
self.text_encoder_1,
module_map = {
torch.nn.Linear: AutoWrappedLinear,
torch.nn.Embedding: AutoWrappedModule,
torch.nn.LayerNorm: AutoWrappedModule,
},
module_config = dict(
offload_dtype=dtype,
offload_device="cpu",
onload_dtype=dtype,
onload_device="cpu",
computation_dtype=self.torch_dtype,
computation_device=self.device,
),
)
dtype = next(iter(self.text_encoder_2.parameters())).dtype
enable_vram_management(
self.text_encoder_2,
module_map = {
torch.nn.Linear: AutoWrappedLinear,
torch.nn.Embedding: AutoWrappedModule,
T5LayerNorm: AutoWrappedModule,
T5DenseActDense: AutoWrappedModule,
T5DenseGatedActDense: AutoWrappedModule,
},
module_config = dict(
offload_dtype=dtype,
offload_device="cpu",
onload_dtype=dtype,
onload_device="cpu",
computation_dtype=self.torch_dtype,
computation_device=self.device,
),
)
dtype = next(iter(self.dit.parameters())).dtype
enable_vram_management(
self.dit,
module_map = {
RMSNorm: AutoWrappedModule,
torch.nn.Linear: AutoWrappedLinear,
},
module_config = dict(
offload_dtype=dtype,
offload_device="cpu",
onload_dtype=dtype,
onload_device="cuda",
computation_dtype=self.torch_dtype,
computation_device=self.device,
),
max_num_param=num_persistent_param_in_dit,
overflow_module_config = dict(
offload_dtype=dtype,
offload_device="cpu",
onload_dtype=dtype,
onload_device="cpu",
computation_dtype=self.torch_dtype,
computation_device=self.device,
),
)
dtype = next(iter(self.vae_decoder.parameters())).dtype
enable_vram_management(
self.vae_decoder,
module_map = {
torch.nn.Linear: AutoWrappedLinear,
torch.nn.Conv2d: AutoWrappedModule,
torch.nn.GroupNorm: AutoWrappedModule,
},
module_config = dict(
offload_dtype=dtype,
offload_device="cpu",
onload_dtype=dtype,
onload_device="cpu",
computation_dtype=self.torch_dtype,
computation_device=self.device,
),
)
dtype = next(iter(self.vae_encoder.parameters())).dtype
enable_vram_management(
self.vae_encoder,
module_map = {
torch.nn.Linear: AutoWrappedLinear,
torch.nn.Conv2d: AutoWrappedModule,
torch.nn.GroupNorm: AutoWrappedModule,
},
module_config = dict(
offload_dtype=dtype,
offload_device="cpu",
onload_dtype=dtype,
onload_device="cpu",
computation_dtype=self.torch_dtype,
computation_device=self.device,
),
)
self.enable_cpu_offload()
def denoising_model(self):
return self.dit
def fetch_models(self, model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[], prompt_refiner_classes=[], prompt_extender_classes=[]):
self.text_encoder_1 = model_manager.fetch_model("sd3_text_encoder_1")
self.text_encoder_2 = model_manager.fetch_model("flux_text_encoder_2")
self.dit = model_manager.fetch_model("flux_dit")
self.vae_decoder = model_manager.fetch_model("flux_vae_decoder")
self.vae_encoder = model_manager.fetch_model("flux_vae_encoder")
self.prompter.fetch_models(self.text_encoder_1, self.text_encoder_2)
self.prompter.load_prompt_refiners(model_manager, prompt_refiner_classes)
self.prompter.load_prompt_extenders(model_manager, prompt_extender_classes)
# ControlNets
controlnet_units = []
for config in controlnet_config_units:
controlnet_unit = ControlNetUnit(
Annotator(config.processor_id, device=self.device, skip_processor=config.skip_processor),
model_manager.fetch_model("flux_controlnet", config.model_path),
config.scale
)
controlnet_units.append(controlnet_unit)
self.controlnet = FluxMultiControlNetManager(controlnet_units)
# IP-Adapters
self.ipadapter = model_manager.fetch_model("flux_ipadapter")
self.ipadapter_image_encoder = model_manager.fetch_model("siglip_vision_model")
@staticmethod
def from_model_manager(model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[], prompt_refiner_classes=[], prompt_extender_classes=[], device=None, torch_dtype=None):
pipe = FluxImagePipeline(
device=model_manager.device if device is None else device,
torch_dtype=model_manager.torch_dtype if torch_dtype is None else torch_dtype,
)
pipe.fetch_models(model_manager, controlnet_config_units, prompt_refiner_classes, prompt_extender_classes)
return pipe
def encode_image(self, image, tiled=False, tile_size=64, tile_stride=32):
latents = self.vae_encoder(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
return latents
def decode_image(self, latent, tiled=False, tile_size=64, tile_stride=32):
image = self.vae_decoder(latent.to(self.device), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
image = self.vae_output_to_image(image)
return image
def encode_prompt(self, prompt, positive=True, t5_sequence_length=512):
prompt_emb, pooled_prompt_emb, text_ids = self.prompter.encode_prompt(
prompt, device=self.device, positive=positive, t5_sequence_length=t5_sequence_length
)
return {"prompt_emb": prompt_emb, "pooled_prompt_emb": pooled_prompt_emb, "text_ids": text_ids}
def prepare_extra_input(self, latents=None, guidance=1.0):
latent_image_ids = self.dit.prepare_image_ids(latents)
guidance = torch.Tensor([guidance] * latents.shape[0]).to(device=latents.device, dtype=latents.dtype)
return {"image_ids": latent_image_ids, "guidance": guidance}
def apply_controlnet_mask_on_latents(self, latents, mask):
mask = (self.preprocess_image(mask) + 1) / 2
mask = mask.mean(dim=1, keepdim=True)
mask = mask.to(dtype=self.torch_dtype, device=self.device)
mask = 1 - torch.nn.functional.interpolate(mask, size=latents.shape[-2:])
latents = torch.concat([latents, mask], dim=1)
return latents
def apply_controlnet_mask_on_image(self, image, mask):
mask = mask.resize(image.size)
mask = self.preprocess_image(mask).mean(dim=[0, 1])
image = np.array(image)
image[mask > 0] = 0
image = Image.fromarray(image)
return image
def prepare_controlnet_input(self, controlnet_image, controlnet_inpaint_mask, tiler_kwargs):
if isinstance(controlnet_image, Image.Image):
controlnet_image = [controlnet_image] * len(self.controlnet.processors)
controlnet_frames = []
for i in range(len(self.controlnet.processors)):
# image annotator
image = self.controlnet.process_image(controlnet_image[i], processor_id=i)[0]
if controlnet_inpaint_mask is not None and self.controlnet.processors[i].processor_id == "inpaint":
image = self.apply_controlnet_mask_on_image(image, controlnet_inpaint_mask)
# image to tensor
image = self.preprocess_image(image).to(device=self.device, dtype=self.torch_dtype)
# vae encoder
image = self.encode_image(image, **tiler_kwargs)
if controlnet_inpaint_mask is not None and self.controlnet.processors[i].processor_id == "inpaint":
image = self.apply_controlnet_mask_on_latents(image, controlnet_inpaint_mask)
# store it
controlnet_frames.append(image)
return controlnet_frames
def prepare_ipadapter_inputs(self, images, height=384, width=384):
images = [image.convert("RGB").resize((width, height), resample=3) for image in images]
images = [self.preprocess_image(image).to(device=self.device, dtype=self.torch_dtype) for image in images]
return torch.cat(images, dim=0)
def inpaint_fusion(self, latents, inpaint_latents, pred_noise, fg_mask, bg_mask, progress_id, background_weight=0.):
# inpaint noise
inpaint_noise = (latents - inpaint_latents) / self.scheduler.sigmas[progress_id]
# merge noise
weight = torch.ones_like(inpaint_noise)
inpaint_noise[fg_mask] = pred_noise[fg_mask]
inpaint_noise[bg_mask] += pred_noise[bg_mask] * background_weight
weight[bg_mask] += background_weight
inpaint_noise /= weight
return inpaint_noise
def preprocess_masks(self, masks, height, width, dim):
out_masks = []
for mask in masks:
mask = self.preprocess_image(mask.resize((width, height), resample=Image.NEAREST)).mean(dim=1, keepdim=True) > 0
mask = mask.repeat(1, dim, 1, 1).to(device=self.device, dtype=self.torch_dtype)
out_masks.append(mask)
return out_masks
def prepare_entity_inputs(self, entity_prompts, entity_masks, width, height, t5_sequence_length=512, enable_eligen_inpaint=False):
fg_mask, bg_mask = None, None
if enable_eligen_inpaint:
masks_ = deepcopy(entity_masks)
fg_masks = torch.cat([self.preprocess_image(mask.resize((width//8, height//8))).mean(dim=1, keepdim=True) for mask in masks_])
fg_masks = (fg_masks > 0).float()
fg_mask = fg_masks.sum(dim=0, keepdim=True).repeat(1, 16, 1, 1) > 0
bg_mask = ~fg_mask
entity_masks = self.preprocess_masks(entity_masks, height//8, width//8, 1)
entity_masks = torch.cat(entity_masks, dim=0).unsqueeze(0) # b, n_mask, c, h, w
entity_prompts = self.encode_prompt(entity_prompts, t5_sequence_length=t5_sequence_length)['prompt_emb'].unsqueeze(0)
return entity_prompts, entity_masks, fg_mask, bg_mask
def prepare_latents(self, input_image, height, width, seed, tiled, tile_size, tile_stride):
if input_image is not None:
self.load_models_to_device(['vae_encoder'])
image = self.preprocess_image(input_image).to(device=self.device, dtype=self.torch_dtype)
input_latents = self.encode_image(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
noise = self.generate_noise((1, 16, height//8, width//8), seed=seed, device=self.device, dtype=self.torch_dtype)
latents = self.scheduler.add_noise(input_latents, noise, timestep=self.scheduler.timesteps[0])
else:
latents = self.generate_noise((1, 16, height//8, width//8), seed=seed, device=self.device, dtype=self.torch_dtype)
input_latents = None
return latents, input_latents
def prepare_ipadapter(self, ipadapter_images, ipadapter_scale):
if ipadapter_images is not None:
self.load_models_to_device(['ipadapter_image_encoder'])
ipadapter_images = self.prepare_ipadapter_inputs(ipadapter_images)
ipadapter_image_encoding = self.ipadapter_image_encoder(ipadapter_images).pooler_output
self.load_models_to_device(['ipadapter'])
ipadapter_kwargs_list_posi = {"ipadapter_kwargs_list": self.ipadapter(ipadapter_image_encoding, scale=ipadapter_scale)}
ipadapter_kwargs_list_nega = {"ipadapter_kwargs_list": self.ipadapter(torch.zeros_like(ipadapter_image_encoding))}
else:
ipadapter_kwargs_list_posi, ipadapter_kwargs_list_nega = {"ipadapter_kwargs_list": {}}, {"ipadapter_kwargs_list": {}}
return ipadapter_kwargs_list_posi, ipadapter_kwargs_list_nega
def prepare_controlnet(self, controlnet_image, masks, controlnet_inpaint_mask, tiler_kwargs, enable_controlnet_on_negative):
if controlnet_image is not None:
self.load_models_to_device(['vae_encoder'])
controlnet_kwargs_posi = {"controlnet_frames": self.prepare_controlnet_input(controlnet_image, controlnet_inpaint_mask, tiler_kwargs)}
if len(masks) > 0 and controlnet_inpaint_mask is not None:
print("The controlnet_inpaint_mask will be overridden by masks.")
local_controlnet_kwargs = [{"controlnet_frames": self.prepare_controlnet_input(controlnet_image, mask, tiler_kwargs)} for mask in masks]
else:
local_controlnet_kwargs = None
else:
controlnet_kwargs_posi, local_controlnet_kwargs = {"controlnet_frames": None}, [{}] * len(masks)
controlnet_kwargs_nega = controlnet_kwargs_posi if enable_controlnet_on_negative else {}
return controlnet_kwargs_posi, controlnet_kwargs_nega, local_controlnet_kwargs
def prepare_eligen(self, prompt_emb_nega, eligen_entity_prompts, eligen_entity_masks, width, height, t5_sequence_length, enable_eligen_inpaint, enable_eligen_on_negative, cfg_scale):
if eligen_entity_masks is not None:
entity_prompt_emb_posi, entity_masks_posi, fg_mask, bg_mask = self.prepare_entity_inputs(eligen_entity_prompts, eligen_entity_masks, width, height, t5_sequence_length, enable_eligen_inpaint)
if enable_eligen_on_negative and cfg_scale != 1.0:
entity_prompt_emb_nega = prompt_emb_nega['prompt_emb'].unsqueeze(1).repeat(1, entity_masks_posi.shape[1], 1, 1)
entity_masks_nega = entity_masks_posi
else:
entity_prompt_emb_nega, entity_masks_nega = None, None
else:
entity_prompt_emb_posi, entity_masks_posi, entity_prompt_emb_nega, entity_masks_nega = None, None, None, None
fg_mask, bg_mask = None, None
eligen_kwargs_posi = {"entity_prompt_emb": entity_prompt_emb_posi, "entity_masks": entity_masks_posi}
eligen_kwargs_nega = {"entity_prompt_emb": entity_prompt_emb_nega, "entity_masks": entity_masks_nega}
return eligen_kwargs_posi, eligen_kwargs_nega, fg_mask, bg_mask
def prepare_prompts(self, prompt, local_prompts, masks, mask_scales, t5_sequence_length, negative_prompt, cfg_scale):
# Extend prompt
self.load_models_to_device(['text_encoder_1', 'text_encoder_2'])
prompt, local_prompts, masks, mask_scales = self.extend_prompt(prompt, local_prompts, masks, mask_scales)
# Encode prompts
prompt_emb_posi = self.encode_prompt(prompt, t5_sequence_length=t5_sequence_length)
prompt_emb_nega = self.encode_prompt(negative_prompt, positive=False, t5_sequence_length=t5_sequence_length) if cfg_scale != 1.0 else None
prompt_emb_locals = [self.encode_prompt(prompt_local, t5_sequence_length=t5_sequence_length) for prompt_local in local_prompts]
return prompt_emb_posi, prompt_emb_nega, prompt_emb_locals
@torch.no_grad()
def __call__(
self,
# Prompt
prompt,
negative_prompt="",
cfg_scale=1.0,
embedded_guidance=3.5,
t5_sequence_length=512,
# Image
input_image=None,
denoising_strength=1.0,
height=1024,
width=1024,
seed=None,
# Steps
num_inference_steps=30,
# local prompts
local_prompts=(),
masks=(),
mask_scales=(),
# ControlNet
controlnet_image=None,
controlnet_inpaint_mask=None,
enable_controlnet_on_negative=False,
# IP-Adapter
ipadapter_images=None,
ipadapter_scale=1.0,
# EliGen
eligen_entity_prompts=None,
eligen_entity_masks=None,
enable_eligen_on_negative=False,
enable_eligen_inpaint=False,
# TeaCache
tea_cache_l1_thresh=None,
# Tile
tiled=False,
tile_size=128,
tile_stride=64,
# Progress bar
progress_bar_cmd=tqdm,
progress_bar_st=None,
):
height, width = self.check_resize_height_width(height, width)
# Tiler parameters
tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride}
# Prepare scheduler
self.scheduler.set_timesteps(num_inference_steps, denoising_strength)
# Prepare latent tensors
latents, input_latents = self.prepare_latents(input_image, height, width, seed, tiled, tile_size, tile_stride)
# Prompt
prompt_emb_posi, prompt_emb_nega, prompt_emb_locals = self.prepare_prompts(prompt, local_prompts, masks, mask_scales, t5_sequence_length, negative_prompt, cfg_scale)
# Extra input
extra_input = self.prepare_extra_input(latents, guidance=embedded_guidance)
# Entity control
eligen_kwargs_posi, eligen_kwargs_nega, fg_mask, bg_mask = self.prepare_eligen(prompt_emb_nega, eligen_entity_prompts, eligen_entity_masks, width, height, t5_sequence_length, enable_eligen_inpaint, enable_eligen_on_negative, cfg_scale)
# IP-Adapter
ipadapter_kwargs_list_posi, ipadapter_kwargs_list_nega = self.prepare_ipadapter(ipadapter_images, ipadapter_scale)
# ControlNets
controlnet_kwargs_posi, controlnet_kwargs_nega, local_controlnet_kwargs = self.prepare_controlnet(controlnet_image, masks, controlnet_inpaint_mask, tiler_kwargs, enable_controlnet_on_negative)
# TeaCache
tea_cache_kwargs = {"tea_cache": TeaCache(num_inference_steps, rel_l1_thresh=tea_cache_l1_thresh) if tea_cache_l1_thresh is not None else None}
# Denoise
self.load_models_to_device(['dit', 'controlnet'])
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)):
timestep = timestep.unsqueeze(0).to(self.device)
# Positive side
inference_callback = lambda prompt_emb_posi, controlnet_kwargs: lets_dance_flux(
dit=self.dit, controlnet=self.controlnet,
hidden_states=latents, timestep=timestep,
**prompt_emb_posi, **tiler_kwargs, **extra_input, **controlnet_kwargs, **ipadapter_kwargs_list_posi, **eligen_kwargs_posi, **tea_cache_kwargs,
)
noise_pred_posi = self.control_noise_via_local_prompts(
prompt_emb_posi, prompt_emb_locals, masks, mask_scales, inference_callback,
special_kwargs=controlnet_kwargs_posi, special_local_kwargs_list=local_controlnet_kwargs
)
# Inpaint
if enable_eligen_inpaint:
noise_pred_posi = self.inpaint_fusion(latents, input_latents, noise_pred_posi, fg_mask, bg_mask, progress_id)
# Classifier-free guidance
if cfg_scale != 1.0:
# Negative side
noise_pred_nega = lets_dance_flux(
dit=self.dit, controlnet=self.controlnet,
hidden_states=latents, timestep=timestep,
**prompt_emb_nega, **tiler_kwargs, **extra_input, **controlnet_kwargs_nega, **ipadapter_kwargs_list_nega, **eligen_kwargs_nega,
)
noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega)
else:
noise_pred = noise_pred_posi
# Iterate
latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents)
# UI
if progress_bar_st is not None:
progress_bar_st.progress(progress_id / len(self.scheduler.timesteps))
# Decode image
self.load_models_to_device(['vae_decoder'])
image = self.decode_image(latents, **tiler_kwargs)
# Offload all models
self.load_models_to_device([])
return image
class TeaCache:
def __init__(self, num_inference_steps, rel_l1_thresh):
self.num_inference_steps = num_inference_steps
self.step = 0
self.accumulated_rel_l1_distance = 0
self.previous_modulated_input = None
self.rel_l1_thresh = rel_l1_thresh
self.previous_residual = None
self.previous_hidden_states = None
def check(self, dit: FluxDiT, hidden_states, conditioning):
inp = hidden_states.clone()
temb_ = conditioning.clone()
modulated_inp, _, _, _, _ = dit.blocks[0].norm1_a(inp, emb=temb_)
if self.step == 0 or self.step == self.num_inference_steps - 1:
should_calc = True
self.accumulated_rel_l1_distance = 0
else:
coefficients = [4.98651651e+02, -2.83781631e+02, 5.58554382e+01, -3.82021401e+00, 2.64230861e-01]
rescale_func = np.poly1d(coefficients)
self.accumulated_rel_l1_distance += rescale_func(((modulated_inp-self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item())
if self.accumulated_rel_l1_distance < self.rel_l1_thresh:
should_calc = False
else:
should_calc = True
self.accumulated_rel_l1_distance = 0
self.previous_modulated_input = modulated_inp
self.step += 1
if self.step == self.num_inference_steps:
self.step = 0
if should_calc:
self.previous_hidden_states = hidden_states.clone()
return not should_calc
def store(self, hidden_states):
self.previous_residual = hidden_states - self.previous_hidden_states
self.previous_hidden_states = None
def update(self, hidden_states):
hidden_states = hidden_states + self.previous_residual
return hidden_states
def lets_dance_flux(
dit: FluxDiT,
controlnet: FluxMultiControlNetManager = None,
hidden_states=None,
timestep=None,
prompt_emb=None,
pooled_prompt_emb=None,
guidance=None,
text_ids=None,
image_ids=None,
controlnet_frames=None,
tiled=False,
tile_size=128,
tile_stride=64,
entity_prompt_emb=None,
entity_masks=None,
ipadapter_kwargs_list={},
tea_cache: TeaCache = None,
**kwargs
):
if tiled:
def flux_forward_fn(hl, hr, wl, wr):
tiled_controlnet_frames = [f[:, :, hl: hr, wl: wr] for f in controlnet_frames] if controlnet_frames is not None else None
return lets_dance_flux(
dit=dit,
controlnet=controlnet,
hidden_states=hidden_states[:, :, hl: hr, wl: wr],
timestep=timestep,
prompt_emb=prompt_emb,
pooled_prompt_emb=pooled_prompt_emb,
guidance=guidance,
text_ids=text_ids,
image_ids=None,
controlnet_frames=tiled_controlnet_frames,
tiled=False,
**kwargs
)
return FastTileWorker().tiled_forward(
flux_forward_fn,
hidden_states,
tile_size=tile_size,
tile_stride=tile_stride,
tile_device=hidden_states.device,
tile_dtype=hidden_states.dtype
)
# ControlNet
if controlnet is not None and controlnet_frames is not None:
controlnet_extra_kwargs = {
"hidden_states": hidden_states,
"timestep": timestep,
"prompt_emb": prompt_emb,
"pooled_prompt_emb": pooled_prompt_emb,
"guidance": guidance,
"text_ids": text_ids,
"image_ids": image_ids,
"tiled": tiled,
"tile_size": tile_size,
"tile_stride": tile_stride,
}
controlnet_res_stack, controlnet_single_res_stack = controlnet(
controlnet_frames, **controlnet_extra_kwargs
)
if image_ids is None:
image_ids = dit.prepare_image_ids(hidden_states)
conditioning = dit.time_embedder(timestep, hidden_states.dtype) + dit.pooled_text_embedder(pooled_prompt_emb)
if dit.guidance_embedder is not None:
guidance = guidance * 1000
conditioning = conditioning + dit.guidance_embedder(guidance, hidden_states.dtype)
height, width = hidden_states.shape[-2:]
hidden_states = dit.patchify(hidden_states)
hidden_states = dit.x_embedder(hidden_states)
if entity_prompt_emb is not None and entity_masks is not None:
prompt_emb, image_rotary_emb, attention_mask = dit.process_entity_masks(hidden_states, prompt_emb, entity_prompt_emb, entity_masks, text_ids, image_ids)
else:
prompt_emb = dit.context_embedder(prompt_emb)
image_rotary_emb = dit.pos_embedder(torch.cat((text_ids, image_ids), dim=1))
attention_mask = None
# TeaCache
if tea_cache is not None:
tea_cache_update = tea_cache.check(dit, hidden_states, conditioning)
else:
tea_cache_update = False
if tea_cache_update:
hidden_states = tea_cache.update(hidden_states)
else:
# Joint Blocks
for block_id, block in enumerate(dit.blocks):
hidden_states, prompt_emb = block(
hidden_states,
prompt_emb,
conditioning,
image_rotary_emb,
attention_mask,
ipadapter_kwargs_list=ipadapter_kwargs_list.get(block_id, None)
)
# ControlNet
if controlnet is not None and controlnet_frames is not None:
hidden_states = hidden_states + controlnet_res_stack[block_id]
# Single Blocks
hidden_states = torch.cat([prompt_emb, hidden_states], dim=1)
num_joint_blocks = len(dit.blocks)
for block_id, block in enumerate(dit.single_blocks):
hidden_states, prompt_emb = block(
hidden_states,
prompt_emb,
conditioning,
image_rotary_emb,
attention_mask,
ipadapter_kwargs_list=ipadapter_kwargs_list.get(block_id + num_joint_blocks, None)
)
# ControlNet
if controlnet is not None and controlnet_frames is not None:
hidden_states[:, prompt_emb.shape[1]:] = hidden_states[:, prompt_emb.shape[1]:] + controlnet_single_res_stack[block_id]
hidden_states = hidden_states[:, prompt_emb.shape[1]:]
if tea_cache is not None:
tea_cache.store(hidden_states)
hidden_states = dit.final_norm_out(hidden_states, conditioning)
hidden_states = dit.final_proj_out(hidden_states)
hidden_states = dit.unpatchify(hidden_states, height, width)
return hidden_states
|