Spaces:
Running
on
L40S
Running
on
L40S
File size: 17,733 Bytes
4bf9661 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
from ..models import ModelManager, SD3TextEncoder1, HunyuanVideoVAEDecoder, HunyuanVideoVAEEncoder
from ..models.hunyuan_video_dit import HunyuanVideoDiT
from ..models.hunyuan_video_text_encoder import HunyuanVideoLLMEncoder
from ..schedulers.flow_match import FlowMatchScheduler
from .base import BasePipeline
from ..prompters import HunyuanVideoPrompter
import torch
import torchvision.transforms as transforms
from einops import rearrange
import numpy as np
from PIL import Image
from tqdm import tqdm
class HunyuanVideoPipeline(BasePipeline):
def __init__(self, device="cuda", torch_dtype=torch.float16):
super().__init__(device=device, torch_dtype=torch_dtype)
self.scheduler = FlowMatchScheduler(shift=7.0, sigma_min=0.0, extra_one_step=True)
self.prompter = HunyuanVideoPrompter()
self.text_encoder_1: SD3TextEncoder1 = None
self.text_encoder_2: HunyuanVideoLLMEncoder = None
self.dit: HunyuanVideoDiT = None
self.vae_decoder: HunyuanVideoVAEDecoder = None
self.vae_encoder: HunyuanVideoVAEEncoder = None
self.model_names = ['text_encoder_1', 'text_encoder_2', 'dit', 'vae_decoder', 'vae_encoder']
self.vram_management = False
def enable_vram_management(self):
self.vram_management = True
self.enable_cpu_offload()
self.text_encoder_2.enable_auto_offload(dtype=self.torch_dtype, device=self.device)
self.dit.enable_auto_offload(dtype=self.torch_dtype, device=self.device)
def fetch_models(self, model_manager: ModelManager):
self.text_encoder_1 = model_manager.fetch_model("sd3_text_encoder_1")
self.text_encoder_2 = model_manager.fetch_model("hunyuan_video_text_encoder_2")
self.dit = model_manager.fetch_model("hunyuan_video_dit")
self.vae_decoder = model_manager.fetch_model("hunyuan_video_vae_decoder")
self.vae_encoder = model_manager.fetch_model("hunyuan_video_vae_encoder")
self.prompter.fetch_models(self.text_encoder_1, self.text_encoder_2)
@staticmethod
def from_model_manager(model_manager: ModelManager, torch_dtype=None, device=None, enable_vram_management=True):
if device is None: device = model_manager.device
if torch_dtype is None: torch_dtype = model_manager.torch_dtype
pipe = HunyuanVideoPipeline(device=device, torch_dtype=torch_dtype)
pipe.fetch_models(model_manager)
if enable_vram_management:
pipe.enable_vram_management()
return pipe
def generate_crop_size_list(self, base_size=256, patch_size=32, max_ratio=4.0):
num_patches = round((base_size / patch_size)**2)
assert max_ratio >= 1.0
crop_size_list = []
wp, hp = num_patches, 1
while wp > 0:
if max(wp, hp) / min(wp, hp) <= max_ratio:
crop_size_list.append((wp * patch_size, hp * patch_size))
if (hp + 1) * wp <= num_patches:
hp += 1
else:
wp -= 1
return crop_size_list
def get_closest_ratio(self, height: float, width: float, ratios: list, buckets: list):
aspect_ratio = float(height) / float(width)
closest_ratio_id = np.abs(ratios - aspect_ratio).argmin()
closest_ratio = min(ratios, key=lambda ratio: abs(float(ratio) - aspect_ratio))
return buckets[closest_ratio_id], float(closest_ratio)
def prepare_vae_images_inputs(self, semantic_images, i2v_resolution="720p"):
if i2v_resolution == "720p":
bucket_hw_base_size = 960
elif i2v_resolution == "540p":
bucket_hw_base_size = 720
elif i2v_resolution == "360p":
bucket_hw_base_size = 480
else:
raise ValueError(f"i2v_resolution: {i2v_resolution} must be in [360p, 540p, 720p]")
origin_size = semantic_images[0].size
crop_size_list = self.generate_crop_size_list(bucket_hw_base_size, 32)
aspect_ratios = np.array([round(float(h) / float(w), 5) for h, w in crop_size_list])
closest_size, closest_ratio = self.get_closest_ratio(origin_size[1], origin_size[0], aspect_ratios, crop_size_list)
ref_image_transform = transforms.Compose([
transforms.Resize(closest_size),
transforms.CenterCrop(closest_size),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])
])
semantic_image_pixel_values = [ref_image_transform(semantic_image) for semantic_image in semantic_images]
semantic_image_pixel_values = torch.cat(semantic_image_pixel_values).unsqueeze(0).unsqueeze(2).to(self.device)
target_height, target_width = closest_size
return semantic_image_pixel_values, target_height, target_width
def encode_prompt(self, prompt, positive=True, clip_sequence_length=77, llm_sequence_length=256, input_images=None):
prompt_emb, pooled_prompt_emb, text_mask = self.prompter.encode_prompt(
prompt, device=self.device, positive=positive, clip_sequence_length=clip_sequence_length, llm_sequence_length=llm_sequence_length, images=input_images
)
return {"prompt_emb": prompt_emb, "pooled_prompt_emb": pooled_prompt_emb, "text_mask": text_mask}
def prepare_extra_input(self, latents=None, guidance=1.0):
freqs_cos, freqs_sin = self.dit.prepare_freqs(latents)
guidance = torch.Tensor([guidance] * latents.shape[0]).to(device=latents.device, dtype=latents.dtype)
return {"freqs_cos": freqs_cos, "freqs_sin": freqs_sin, "guidance": guidance}
def tensor2video(self, frames):
frames = rearrange(frames, "C T H W -> T H W C")
frames = ((frames.float() + 1) * 127.5).clip(0, 255).cpu().numpy().astype(np.uint8)
frames = [Image.fromarray(frame) for frame in frames]
return frames
def encode_video(self, frames, tile_size=(17, 30, 30), tile_stride=(12, 20, 20)):
tile_size = ((tile_size[0] - 1) * 4 + 1, tile_size[1] * 8, tile_size[2] * 8)
tile_stride = (tile_stride[0] * 4, tile_stride[1] * 8, tile_stride[2] * 8)
latents = self.vae_encoder.encode_video(frames, tile_size=tile_size, tile_stride=tile_stride)
return latents
@torch.no_grad()
def __call__(
self,
prompt,
negative_prompt="",
input_video=None,
input_images=None,
i2v_resolution="720p",
i2v_stability=True,
denoising_strength=1.0,
seed=None,
rand_device=None,
height=720,
width=1280,
num_frames=129,
embedded_guidance=6.0,
cfg_scale=1.0,
num_inference_steps=30,
tea_cache_l1_thresh=None,
tile_size=(17, 30, 30),
tile_stride=(12, 20, 20),
step_processor=None,
progress_bar_cmd=lambda x: x,
progress_bar_st=None,
):
# Tiler parameters
tiler_kwargs = {"tile_size": tile_size, "tile_stride": tile_stride}
# Scheduler
self.scheduler.set_timesteps(num_inference_steps, denoising_strength)
# encoder input images
if input_images is not None:
self.load_models_to_device(['vae_encoder'])
image_pixel_values, height, width = self.prepare_vae_images_inputs(input_images, i2v_resolution=i2v_resolution)
with torch.autocast(device_type=self.device, dtype=torch.float16, enabled=True):
image_latents = self.vae_encoder(image_pixel_values)
# Initialize noise
rand_device = self.device if rand_device is None else rand_device
noise = self.generate_noise((1, 16, (num_frames - 1) // 4 + 1, height//8, width//8), seed=seed, device=rand_device, dtype=self.torch_dtype).to(self.device)
if input_video is not None:
self.load_models_to_device(['vae_encoder'])
input_video = self.preprocess_images(input_video)
input_video = torch.stack(input_video, dim=2)
latents = self.encode_video(input_video, **tiler_kwargs).to(dtype=self.torch_dtype, device=self.device)
latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0])
elif input_images is not None and i2v_stability:
noise = self.generate_noise((1, 16, (num_frames - 1) // 4 + 1, height//8, width//8), seed=seed, device=rand_device, dtype=image_latents.dtype).to(self.device)
t = torch.tensor([0.999]).to(device=self.device)
latents = noise * t + image_latents.repeat(1, 1, (num_frames - 1) // 4 + 1, 1, 1) * (1 - t)
latents = latents.to(dtype=image_latents.dtype)
else:
latents = noise
# Encode prompts
# current mllm does not support vram_management
self.load_models_to_device(["text_encoder_1"] if self.vram_management and input_images is None else ["text_encoder_1", "text_encoder_2"])
prompt_emb_posi = self.encode_prompt(prompt, positive=True, input_images=input_images)
if cfg_scale != 1.0:
prompt_emb_nega = self.encode_prompt(negative_prompt, positive=False)
# Extra input
extra_input = self.prepare_extra_input(latents, guidance=embedded_guidance)
# TeaCache
tea_cache_kwargs = {"tea_cache": TeaCache(num_inference_steps, rel_l1_thresh=tea_cache_l1_thresh) if tea_cache_l1_thresh is not None else None}
# Denoise
self.load_models_to_device([] if self.vram_management else ["dit"])
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)):
timestep = timestep.unsqueeze(0).to(self.device)
print(f"Step {progress_id + 1} / {len(self.scheduler.timesteps)}")
forward_func = lets_dance_hunyuan_video
if input_images is not None:
latents = torch.concat([image_latents, latents[:, :, 1:, :, :]], dim=2)
forward_func = lets_dance_hunyuan_video_i2v
# Inference
with torch.autocast(device_type=self.device, dtype=self.torch_dtype):
noise_pred_posi = forward_func(self.dit, latents, timestep, **prompt_emb_posi, **extra_input, **tea_cache_kwargs)
if cfg_scale != 1.0:
noise_pred_nega = forward_func(self.dit, latents, timestep, **prompt_emb_nega, **extra_input)
noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega)
else:
noise_pred = noise_pred_posi
# (Experimental feature, may be removed in the future)
if step_processor is not None:
self.load_models_to_device(['vae_decoder'])
rendered_frames = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents, to_final=True)
rendered_frames = self.vae_decoder.decode_video(rendered_frames, **tiler_kwargs)
rendered_frames = self.tensor2video(rendered_frames[0])
rendered_frames = step_processor(rendered_frames, original_frames=input_video)
self.load_models_to_device(['vae_encoder'])
rendered_frames = self.preprocess_images(rendered_frames)
rendered_frames = torch.stack(rendered_frames, dim=2)
target_latents = self.encode_video(rendered_frames).to(dtype=self.torch_dtype, device=self.device)
noise_pred = self.scheduler.return_to_timestep(self.scheduler.timesteps[progress_id], latents, target_latents)
self.load_models_to_device([] if self.vram_management else ["dit"])
# Scheduler
if input_images is not None:
latents = self.scheduler.step(noise_pred[:, :, 1:, :, :], self.scheduler.timesteps[progress_id], latents[:, :, 1:, :, :])
latents = torch.concat([image_latents, latents], dim=2)
else:
latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents)
# Decode
self.load_models_to_device(['vae_decoder'])
frames = self.vae_decoder.decode_video(latents, **tiler_kwargs)
self.load_models_to_device([])
frames = self.tensor2video(frames[0])
return frames
class TeaCache:
def __init__(self, num_inference_steps, rel_l1_thresh):
self.num_inference_steps = num_inference_steps
self.step = 0
self.accumulated_rel_l1_distance = 0
self.previous_modulated_input = None
self.rel_l1_thresh = rel_l1_thresh
self.previous_residual = None
self.previous_hidden_states = None
def check(self, dit: HunyuanVideoDiT, img, vec):
img_ = img.clone()
vec_ = vec.clone()
img_mod1_shift, img_mod1_scale, _, _, _, _ = dit.double_blocks[0].component_a.mod(vec_).chunk(6, dim=-1)
normed_inp = dit.double_blocks[0].component_a.norm1(img_)
modulated_inp = normed_inp * (1 + img_mod1_scale.unsqueeze(1)) + img_mod1_shift.unsqueeze(1)
if self.step == 0 or self.step == self.num_inference_steps - 1:
should_calc = True
self.accumulated_rel_l1_distance = 0
else:
coefficients = [7.33226126e+02, -4.01131952e+02, 6.75869174e+01, -3.14987800e+00, 9.61237896e-02]
rescale_func = np.poly1d(coefficients)
self.accumulated_rel_l1_distance += rescale_func(((modulated_inp-self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item())
if self.accumulated_rel_l1_distance < self.rel_l1_thresh:
should_calc = False
else:
should_calc = True
self.accumulated_rel_l1_distance = 0
self.previous_modulated_input = modulated_inp
self.step += 1
if self.step == self.num_inference_steps:
self.step = 0
if should_calc:
self.previous_hidden_states = img.clone()
return not should_calc
def store(self, hidden_states):
self.previous_residual = hidden_states - self.previous_hidden_states
self.previous_hidden_states = None
def update(self, hidden_states):
hidden_states = hidden_states + self.previous_residual
return hidden_states
def lets_dance_hunyuan_video(
dit: HunyuanVideoDiT,
x: torch.Tensor,
t: torch.Tensor,
prompt_emb: torch.Tensor = None,
text_mask: torch.Tensor = None,
pooled_prompt_emb: torch.Tensor = None,
freqs_cos: torch.Tensor = None,
freqs_sin: torch.Tensor = None,
guidance: torch.Tensor = None,
tea_cache: TeaCache = None,
**kwargs
):
B, C, T, H, W = x.shape
vec = dit.time_in(t, dtype=torch.float32) + dit.vector_in(pooled_prompt_emb) + dit.guidance_in(guidance * 1000, dtype=torch.float32)
img = dit.img_in(x)
txt = dit.txt_in(prompt_emb, t, text_mask)
# TeaCache
if tea_cache is not None:
tea_cache_update = tea_cache.check(dit, img, vec)
else:
tea_cache_update = False
if tea_cache_update:
print("TeaCache skip forward.")
img = tea_cache.update(img)
else:
split_token = int(text_mask.sum(dim=1))
txt_len = int(txt.shape[1])
for block in tqdm(dit.double_blocks, desc="Double stream blocks"):
img, txt = block(img, txt, vec, (freqs_cos, freqs_sin), split_token=split_token)
x = torch.concat([img, txt], dim=1)
for block in tqdm(dit.single_blocks, desc="Single stream blocks"):
x = block(x, vec, (freqs_cos, freqs_sin), txt_len=txt_len, split_token=split_token)
img = x[:, :-txt_len]
if tea_cache is not None:
tea_cache.store(img)
img = dit.final_layer(img, vec)
img = dit.unpatchify(img, T=T//1, H=H//2, W=W//2)
return img
def lets_dance_hunyuan_video_i2v(
dit: HunyuanVideoDiT,
x: torch.Tensor,
t: torch.Tensor,
prompt_emb: torch.Tensor = None,
text_mask: torch.Tensor = None,
pooled_prompt_emb: torch.Tensor = None,
freqs_cos: torch.Tensor = None,
freqs_sin: torch.Tensor = None,
guidance: torch.Tensor = None,
tea_cache: TeaCache = None,
**kwargs
):
B, C, T, H, W = x.shape
# Uncomment below to keep same as official implementation
# guidance = guidance.to(dtype=torch.float32).to(torch.bfloat16)
vec = dit.time_in(t, dtype=torch.bfloat16)
vec_2 = dit.vector_in(pooled_prompt_emb)
vec = vec + vec_2
vec = vec + dit.guidance_in(guidance * 1000., dtype=torch.bfloat16)
token_replace_vec = dit.time_in(torch.zeros_like(t), dtype=torch.bfloat16)
tr_token = (H // 2) * (W // 2)
token_replace_vec = token_replace_vec + vec_2
img = dit.img_in(x)
txt = dit.txt_in(prompt_emb, t, text_mask)
# TeaCache
if tea_cache is not None:
tea_cache_update = tea_cache.check(dit, img, vec)
else:
tea_cache_update = False
if tea_cache_update:
print("TeaCache skip forward.")
img = tea_cache.update(img)
else:
split_token = int(text_mask.sum(dim=1))
txt_len = int(txt.shape[1])
for block in tqdm(dit.double_blocks, desc="Double stream blocks"):
img, txt = block(img, txt, vec, (freqs_cos, freqs_sin), token_replace_vec, tr_token, split_token)
x = torch.concat([img, txt], dim=1)
for block in tqdm(dit.single_blocks, desc="Single stream blocks"):
x = block(x, vec, (freqs_cos, freqs_sin), txt_len, token_replace_vec, tr_token, split_token)
img = x[:, :-txt_len]
if tea_cache is not None:
tea_cache.store(img)
img = dit.final_layer(img, vec)
img = dit.unpatchify(img, T=T//1, H=H//2, W=W//2)
return img
|