File size: 13,049 Bytes
4bf9661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
from ..models.omnigen import OmniGenTransformer
from ..models.sdxl_vae_encoder import SDXLVAEEncoder
from ..models.sdxl_vae_decoder import SDXLVAEDecoder
from ..models.model_manager import ModelManager
from ..prompters.omnigen_prompter import OmniGenPrompter
from ..schedulers import FlowMatchScheduler
from .base import BasePipeline
from typing import Optional, Dict, Any, Tuple, List
from transformers.cache_utils import DynamicCache
import torch, os
from tqdm import tqdm



class OmniGenCache(DynamicCache):
    def __init__(self, 
                    num_tokens_for_img: int, offload_kv_cache: bool=False) -> None:
        if not torch.cuda.is_available():
            print("No available GPU, offload_kv_cache will be set to False, which will result in large memory usage and time cost when input multiple images!!!")
            offload_kv_cache = False
            raise RuntimeError("OffloadedCache can only be used with a GPU")
        super().__init__()
        self.original_device = []
        self.prefetch_stream = torch.cuda.Stream()
        self.num_tokens_for_img = num_tokens_for_img
        self.offload_kv_cache = offload_kv_cache

    def prefetch_layer(self, layer_idx: int):
        "Starts prefetching the next layer cache"
        if layer_idx < len(self):
            with torch.cuda.stream(self.prefetch_stream):
                # Prefetch next layer tensors to GPU
                device = self.original_device[layer_idx]
                self.key_cache[layer_idx] = self.key_cache[layer_idx].to(device, non_blocking=True)
                self.value_cache[layer_idx] = self.value_cache[layer_idx].to(device, non_blocking=True)

    
    def evict_previous_layer(self, layer_idx: int):
        "Moves the previous layer cache to the CPU"
        if len(self) > 2:
            # We do it on the default stream so it occurs after all earlier computations on these tensors are done
            if layer_idx == 0: 
                prev_layer_idx = -1
            else:
                prev_layer_idx = (layer_idx - 1) % len(self)
            self.key_cache[prev_layer_idx] = self.key_cache[prev_layer_idx].to("cpu", non_blocking=True)
            self.value_cache[prev_layer_idx] = self.value_cache[prev_layer_idx].to("cpu", non_blocking=True)


    def __getitem__(self, layer_idx: int) -> List[Tuple[torch.Tensor]]:
        "Gets the cache for this layer to the device. Prefetches the next and evicts the previous layer."
        if layer_idx < len(self):
            if self.offload_kv_cache:
                # Evict the previous layer if necessary
                torch.cuda.current_stream().synchronize()
                self.evict_previous_layer(layer_idx)
                # Load current layer cache to its original device if not already there
                original_device = self.original_device[layer_idx]
                # self.prefetch_stream.synchronize(original_device)
                torch.cuda.synchronize(self.prefetch_stream)
                key_tensor = self.key_cache[layer_idx]
                value_tensor = self.value_cache[layer_idx]
                
                # Prefetch the next layer
                self.prefetch_layer((layer_idx + 1) % len(self))
            else:
                key_tensor = self.key_cache[layer_idx]
                value_tensor = self.value_cache[layer_idx]
            return (key_tensor, value_tensor)
        else:
            raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}")
        
       
    def update(
        self,
        key_states: torch.Tensor, 
        value_states: torch.Tensor,
        layer_idx: int,
        cache_kwargs: Optional[Dict[str, Any]] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
        Parameters:
            key_states (`torch.Tensor`):
                The new key states to cache.
            value_states (`torch.Tensor`):
                The new value states to cache.
            layer_idx (`int`):
                The index of the layer to cache the states for.
            cache_kwargs (`Dict[str, Any]`, `optional`):
                Additional arguments for the cache subclass. No additional arguments are used in `OffloadedCache`.
        Return:
            A tuple containing the updated key and value states.
        """
        # Update the cache
        if len(self.key_cache) < layer_idx:
            raise ValueError("OffloadedCache does not support model usage where layers are skipped. Use DynamicCache.")
        elif len(self.key_cache) == layer_idx:
            # only cache the states for condition tokens
            key_states = key_states[..., :-(self.num_tokens_for_img+1), :]
            value_states = value_states[..., :-(self.num_tokens_for_img+1), :]

             # Update the number of seen tokens
            if layer_idx == 0:
                self._seen_tokens += key_states.shape[-2]
                
            self.key_cache.append(key_states)
            self.value_cache.append(value_states)
            self.original_device.append(key_states.device)
            if self.offload_kv_cache:
                self.evict_previous_layer(layer_idx)
            return self.key_cache[layer_idx], self.value_cache[layer_idx]
        else:
            # only cache the states for condition tokens
            key_tensor, value_tensor = self[layer_idx]
            k = torch.cat([key_tensor, key_states], dim=-2)
            v = torch.cat([value_tensor, value_states], dim=-2)
            return k, v



class OmnigenImagePipeline(BasePipeline):

    def __init__(self, device="cuda", torch_dtype=torch.float16):
        super().__init__(device=device, torch_dtype=torch_dtype)
        self.scheduler = FlowMatchScheduler(num_train_timesteps=1, shift=1, inverse_timesteps=True, sigma_min=0, sigma_max=1)
        # models
        self.vae_decoder: SDXLVAEDecoder = None
        self.vae_encoder: SDXLVAEEncoder = None
        self.transformer: OmniGenTransformer = None
        self.prompter: OmniGenPrompter = None
        self.model_names = ['transformer', 'vae_decoder', 'vae_encoder']


    def denoising_model(self):
        return self.transformer


    def fetch_models(self, model_manager: ModelManager, prompt_refiner_classes=[]):
        # Main models
        self.transformer, model_path = model_manager.fetch_model("omnigen_transformer", require_model_path=True)
        self.vae_decoder = model_manager.fetch_model("sdxl_vae_decoder")
        self.vae_encoder = model_manager.fetch_model("sdxl_vae_encoder")
        self.prompter = OmniGenPrompter.from_pretrained(os.path.dirname(model_path))


    @staticmethod
    def from_model_manager(model_manager: ModelManager, prompt_refiner_classes=[], device=None):
        pipe = OmnigenImagePipeline(
            device=model_manager.device if device is None else device,
            torch_dtype=model_manager.torch_dtype,
        )
        pipe.fetch_models(model_manager, prompt_refiner_classes=[])
        return pipe
    

    def encode_image(self, image, tiled=False, tile_size=64, tile_stride=32):
        latents = self.vae_encoder(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
        return latents

    
    def encode_images(self, images, tiled=False, tile_size=64, tile_stride=32):
        latents = [self.encode_image(image.to(device=self.device), tiled, tile_size, tile_stride).to(self.torch_dtype) for image in images]
        return latents
    

    def decode_image(self, latent, tiled=False, tile_size=64, tile_stride=32):
        image = self.vae_decoder(latent.to(self.device), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
        image = self.vae_output_to_image(image)
        return image
    

    def encode_prompt(self, prompt, clip_skip=1, positive=True):
        prompt_emb = self.prompter.encode_prompt(prompt, clip_skip=clip_skip, device=self.device, positive=positive)
        return {"encoder_hidden_states": prompt_emb}
    

    def prepare_extra_input(self, latents=None):
        return {}
    

    def crop_position_ids_for_cache(self, position_ids, num_tokens_for_img):
        if isinstance(position_ids, list):
            for i in range(len(position_ids)):
                position_ids[i] = position_ids[i][:, -(num_tokens_for_img+1):]
        else:
            position_ids = position_ids[:, -(num_tokens_for_img+1):]
        return position_ids
    
    
    def crop_attention_mask_for_cache(self, attention_mask, num_tokens_for_img):
        if isinstance(attention_mask, list):
            return [x[..., -(num_tokens_for_img+1):, :] for x in attention_mask]
        return attention_mask[..., -(num_tokens_for_img+1):, :]
    

    @torch.no_grad()
    def __call__(
        self,
        prompt,
        reference_images=[],
        cfg_scale=2.0,
        image_cfg_scale=2.0,
        use_kv_cache=True,
        offload_kv_cache=True,
        input_image=None,
        denoising_strength=1.0,
        height=1024,
        width=1024,
        num_inference_steps=20,
        tiled=False,
        tile_size=64,
        tile_stride=32,
        seed=None,
        progress_bar_cmd=tqdm,
        progress_bar_st=None,
    ):
        height, width = self.check_resize_height_width(height, width)
        
        # Tiler parameters
        tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride}

        # Prepare scheduler
        self.scheduler.set_timesteps(num_inference_steps, denoising_strength)

        # Prepare latent tensors
        if input_image is not None:
            self.load_models_to_device(['vae_encoder'])
            image = self.preprocess_image(input_image).to(device=self.device, dtype=self.torch_dtype)
            latents = self.encode_image(image, **tiler_kwargs)
            noise = self.generate_noise((1, 4, height//8, width//8), seed=seed, device=self.device, dtype=self.torch_dtype)
            latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0])
        else:
            latents = self.generate_noise((1, 4, height//8, width//8), seed=seed, device=self.device, dtype=self.torch_dtype)
        latents = latents.repeat(3, 1, 1, 1)

        # Encode prompts
        input_data = self.prompter(prompt, reference_images, height=height, width=width, use_img_cfg=True, separate_cfg_input=True, use_input_image_size_as_output=False)

        # Encode images
        reference_latents = [self.encode_images(images, **tiler_kwargs) for images in input_data['input_pixel_values']]
        
        # Pack all parameters
        model_kwargs = dict(input_ids=[input_ids.to(self.device) for input_ids in input_data['input_ids']], 
            input_img_latents=reference_latents, 
            input_image_sizes=input_data['input_image_sizes'], 
            attention_mask=[attention_mask.to(self.device) for attention_mask in input_data["attention_mask"]], 
            position_ids=[position_ids.to(self.device) for position_ids in input_data["position_ids"]], 
            cfg_scale=cfg_scale,
            img_cfg_scale=image_cfg_scale,
            use_img_cfg=True,
            use_kv_cache=use_kv_cache,
            offload_model=False,
        )
        
        # Denoise
        self.load_models_to_device(['transformer'])
        cache = [OmniGenCache(latents.size(-1)*latents.size(-2) // 4, offload_kv_cache) for _ in range(len(model_kwargs['input_ids']))] if use_kv_cache else None
        for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)):
            timestep = timestep.unsqueeze(0).repeat(latents.shape[0]).to(self.device)

            # Forward
            noise_pred, cache = self.transformer.forward_with_separate_cfg(latents, timestep, past_key_values=cache, **model_kwargs)

            # Scheduler
            latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents)

            # Update KV cache
            if progress_id == 0 and use_kv_cache:
                num_tokens_for_img = latents.size(-1)*latents.size(-2) // 4
                if isinstance(cache, list):
                    model_kwargs['input_ids'] = [None] * len(cache)
                else:
                    model_kwargs['input_ids'] = None
                model_kwargs['position_ids'] = self.crop_position_ids_for_cache(model_kwargs['position_ids'], num_tokens_for_img)
                model_kwargs['attention_mask'] = self.crop_attention_mask_for_cache(model_kwargs['attention_mask'], num_tokens_for_img)

            # UI
            if progress_bar_st is not None:
                progress_bar_st.progress(progress_id / len(self.scheduler.timesteps))
        
        # Decode image
        del cache
        self.load_models_to_device(['vae_decoder'])
        image = self.decode_image(latents, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)

        # offload all models
        self.load_models_to_device([])
        return image