Spaces:
Running
on
L40S
Running
on
L40S
File size: 13,049 Bytes
4bf9661 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
from ..models.omnigen import OmniGenTransformer
from ..models.sdxl_vae_encoder import SDXLVAEEncoder
from ..models.sdxl_vae_decoder import SDXLVAEDecoder
from ..models.model_manager import ModelManager
from ..prompters.omnigen_prompter import OmniGenPrompter
from ..schedulers import FlowMatchScheduler
from .base import BasePipeline
from typing import Optional, Dict, Any, Tuple, List
from transformers.cache_utils import DynamicCache
import torch, os
from tqdm import tqdm
class OmniGenCache(DynamicCache):
def __init__(self,
num_tokens_for_img: int, offload_kv_cache: bool=False) -> None:
if not torch.cuda.is_available():
print("No available GPU, offload_kv_cache will be set to False, which will result in large memory usage and time cost when input multiple images!!!")
offload_kv_cache = False
raise RuntimeError("OffloadedCache can only be used with a GPU")
super().__init__()
self.original_device = []
self.prefetch_stream = torch.cuda.Stream()
self.num_tokens_for_img = num_tokens_for_img
self.offload_kv_cache = offload_kv_cache
def prefetch_layer(self, layer_idx: int):
"Starts prefetching the next layer cache"
if layer_idx < len(self):
with torch.cuda.stream(self.prefetch_stream):
# Prefetch next layer tensors to GPU
device = self.original_device[layer_idx]
self.key_cache[layer_idx] = self.key_cache[layer_idx].to(device, non_blocking=True)
self.value_cache[layer_idx] = self.value_cache[layer_idx].to(device, non_blocking=True)
def evict_previous_layer(self, layer_idx: int):
"Moves the previous layer cache to the CPU"
if len(self) > 2:
# We do it on the default stream so it occurs after all earlier computations on these tensors are done
if layer_idx == 0:
prev_layer_idx = -1
else:
prev_layer_idx = (layer_idx - 1) % len(self)
self.key_cache[prev_layer_idx] = self.key_cache[prev_layer_idx].to("cpu", non_blocking=True)
self.value_cache[prev_layer_idx] = self.value_cache[prev_layer_idx].to("cpu", non_blocking=True)
def __getitem__(self, layer_idx: int) -> List[Tuple[torch.Tensor]]:
"Gets the cache for this layer to the device. Prefetches the next and evicts the previous layer."
if layer_idx < len(self):
if self.offload_kv_cache:
# Evict the previous layer if necessary
torch.cuda.current_stream().synchronize()
self.evict_previous_layer(layer_idx)
# Load current layer cache to its original device if not already there
original_device = self.original_device[layer_idx]
# self.prefetch_stream.synchronize(original_device)
torch.cuda.synchronize(self.prefetch_stream)
key_tensor = self.key_cache[layer_idx]
value_tensor = self.value_cache[layer_idx]
# Prefetch the next layer
self.prefetch_layer((layer_idx + 1) % len(self))
else:
key_tensor = self.key_cache[layer_idx]
value_tensor = self.value_cache[layer_idx]
return (key_tensor, value_tensor)
else:
raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}")
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
Parameters:
key_states (`torch.Tensor`):
The new key states to cache.
value_states (`torch.Tensor`):
The new value states to cache.
layer_idx (`int`):
The index of the layer to cache the states for.
cache_kwargs (`Dict[str, Any]`, `optional`):
Additional arguments for the cache subclass. No additional arguments are used in `OffloadedCache`.
Return:
A tuple containing the updated key and value states.
"""
# Update the cache
if len(self.key_cache) < layer_idx:
raise ValueError("OffloadedCache does not support model usage where layers are skipped. Use DynamicCache.")
elif len(self.key_cache) == layer_idx:
# only cache the states for condition tokens
key_states = key_states[..., :-(self.num_tokens_for_img+1), :]
value_states = value_states[..., :-(self.num_tokens_for_img+1), :]
# Update the number of seen tokens
if layer_idx == 0:
self._seen_tokens += key_states.shape[-2]
self.key_cache.append(key_states)
self.value_cache.append(value_states)
self.original_device.append(key_states.device)
if self.offload_kv_cache:
self.evict_previous_layer(layer_idx)
return self.key_cache[layer_idx], self.value_cache[layer_idx]
else:
# only cache the states for condition tokens
key_tensor, value_tensor = self[layer_idx]
k = torch.cat([key_tensor, key_states], dim=-2)
v = torch.cat([value_tensor, value_states], dim=-2)
return k, v
class OmnigenImagePipeline(BasePipeline):
def __init__(self, device="cuda", torch_dtype=torch.float16):
super().__init__(device=device, torch_dtype=torch_dtype)
self.scheduler = FlowMatchScheduler(num_train_timesteps=1, shift=1, inverse_timesteps=True, sigma_min=0, sigma_max=1)
# models
self.vae_decoder: SDXLVAEDecoder = None
self.vae_encoder: SDXLVAEEncoder = None
self.transformer: OmniGenTransformer = None
self.prompter: OmniGenPrompter = None
self.model_names = ['transformer', 'vae_decoder', 'vae_encoder']
def denoising_model(self):
return self.transformer
def fetch_models(self, model_manager: ModelManager, prompt_refiner_classes=[]):
# Main models
self.transformer, model_path = model_manager.fetch_model("omnigen_transformer", require_model_path=True)
self.vae_decoder = model_manager.fetch_model("sdxl_vae_decoder")
self.vae_encoder = model_manager.fetch_model("sdxl_vae_encoder")
self.prompter = OmniGenPrompter.from_pretrained(os.path.dirname(model_path))
@staticmethod
def from_model_manager(model_manager: ModelManager, prompt_refiner_classes=[], device=None):
pipe = OmnigenImagePipeline(
device=model_manager.device if device is None else device,
torch_dtype=model_manager.torch_dtype,
)
pipe.fetch_models(model_manager, prompt_refiner_classes=[])
return pipe
def encode_image(self, image, tiled=False, tile_size=64, tile_stride=32):
latents = self.vae_encoder(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
return latents
def encode_images(self, images, tiled=False, tile_size=64, tile_stride=32):
latents = [self.encode_image(image.to(device=self.device), tiled, tile_size, tile_stride).to(self.torch_dtype) for image in images]
return latents
def decode_image(self, latent, tiled=False, tile_size=64, tile_stride=32):
image = self.vae_decoder(latent.to(self.device), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
image = self.vae_output_to_image(image)
return image
def encode_prompt(self, prompt, clip_skip=1, positive=True):
prompt_emb = self.prompter.encode_prompt(prompt, clip_skip=clip_skip, device=self.device, positive=positive)
return {"encoder_hidden_states": prompt_emb}
def prepare_extra_input(self, latents=None):
return {}
def crop_position_ids_for_cache(self, position_ids, num_tokens_for_img):
if isinstance(position_ids, list):
for i in range(len(position_ids)):
position_ids[i] = position_ids[i][:, -(num_tokens_for_img+1):]
else:
position_ids = position_ids[:, -(num_tokens_for_img+1):]
return position_ids
def crop_attention_mask_for_cache(self, attention_mask, num_tokens_for_img):
if isinstance(attention_mask, list):
return [x[..., -(num_tokens_for_img+1):, :] for x in attention_mask]
return attention_mask[..., -(num_tokens_for_img+1):, :]
@torch.no_grad()
def __call__(
self,
prompt,
reference_images=[],
cfg_scale=2.0,
image_cfg_scale=2.0,
use_kv_cache=True,
offload_kv_cache=True,
input_image=None,
denoising_strength=1.0,
height=1024,
width=1024,
num_inference_steps=20,
tiled=False,
tile_size=64,
tile_stride=32,
seed=None,
progress_bar_cmd=tqdm,
progress_bar_st=None,
):
height, width = self.check_resize_height_width(height, width)
# Tiler parameters
tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride}
# Prepare scheduler
self.scheduler.set_timesteps(num_inference_steps, denoising_strength)
# Prepare latent tensors
if input_image is not None:
self.load_models_to_device(['vae_encoder'])
image = self.preprocess_image(input_image).to(device=self.device, dtype=self.torch_dtype)
latents = self.encode_image(image, **tiler_kwargs)
noise = self.generate_noise((1, 4, height//8, width//8), seed=seed, device=self.device, dtype=self.torch_dtype)
latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0])
else:
latents = self.generate_noise((1, 4, height//8, width//8), seed=seed, device=self.device, dtype=self.torch_dtype)
latents = latents.repeat(3, 1, 1, 1)
# Encode prompts
input_data = self.prompter(prompt, reference_images, height=height, width=width, use_img_cfg=True, separate_cfg_input=True, use_input_image_size_as_output=False)
# Encode images
reference_latents = [self.encode_images(images, **tiler_kwargs) for images in input_data['input_pixel_values']]
# Pack all parameters
model_kwargs = dict(input_ids=[input_ids.to(self.device) for input_ids in input_data['input_ids']],
input_img_latents=reference_latents,
input_image_sizes=input_data['input_image_sizes'],
attention_mask=[attention_mask.to(self.device) for attention_mask in input_data["attention_mask"]],
position_ids=[position_ids.to(self.device) for position_ids in input_data["position_ids"]],
cfg_scale=cfg_scale,
img_cfg_scale=image_cfg_scale,
use_img_cfg=True,
use_kv_cache=use_kv_cache,
offload_model=False,
)
# Denoise
self.load_models_to_device(['transformer'])
cache = [OmniGenCache(latents.size(-1)*latents.size(-2) // 4, offload_kv_cache) for _ in range(len(model_kwargs['input_ids']))] if use_kv_cache else None
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)):
timestep = timestep.unsqueeze(0).repeat(latents.shape[0]).to(self.device)
# Forward
noise_pred, cache = self.transformer.forward_with_separate_cfg(latents, timestep, past_key_values=cache, **model_kwargs)
# Scheduler
latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents)
# Update KV cache
if progress_id == 0 and use_kv_cache:
num_tokens_for_img = latents.size(-1)*latents.size(-2) // 4
if isinstance(cache, list):
model_kwargs['input_ids'] = [None] * len(cache)
else:
model_kwargs['input_ids'] = None
model_kwargs['position_ids'] = self.crop_position_ids_for_cache(model_kwargs['position_ids'], num_tokens_for_img)
model_kwargs['attention_mask'] = self.crop_attention_mask_for_cache(model_kwargs['attention_mask'], num_tokens_for_img)
# UI
if progress_bar_st is not None:
progress_bar_st.progress(progress_id / len(self.scheduler.timesteps))
# Decode image
del cache
self.load_models_to_device(['vae_decoder'])
image = self.decode_image(latents, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
# offload all models
self.load_models_to_device([])
return image
|