File size: 16,001 Bytes
4bf9661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
from ..models import ModelManager
from ..models.wan_video_dit import WanModel
from ..models.wan_video_text_encoder import WanTextEncoder
from ..models.wan_video_vae import WanVideoVAE
from ..models.wan_video_image_encoder import WanImageEncoder
from ..schedulers.flow_match import FlowMatchScheduler
from .base import BasePipeline
from ..prompters import WanPrompter
import torch, os
from einops import rearrange
import numpy as np
from PIL import Image
from tqdm import tqdm
from typing import Optional

from ..vram_management import enable_vram_management, AutoWrappedModule, AutoWrappedLinear
from ..models.wan_video_text_encoder import T5RelativeEmbedding, T5LayerNorm
from ..models.wan_video_dit import RMSNorm, sinusoidal_embedding_1d
from ..models.wan_video_vae import RMS_norm, CausalConv3d, Upsample



class WanVideoPipeline(BasePipeline):

    def __init__(self, device="cuda", torch_dtype=torch.float16, tokenizer_path=None):
        super().__init__(device=device, torch_dtype=torch_dtype)
        self.scheduler = FlowMatchScheduler(shift=5, sigma_min=0.0, extra_one_step=True)
        self.prompter = WanPrompter(tokenizer_path=tokenizer_path)
        self.text_encoder: WanTextEncoder = None
        self.image_encoder: WanImageEncoder = None
        self.dit: WanModel = None
        self.vae: WanVideoVAE = None
        self.model_names = ['text_encoder', 'dit', 'vae']
        self.height_division_factor = 16
        self.width_division_factor = 16


    def enable_vram_management(self, num_persistent_param_in_dit=None):
        dtype = next(iter(self.text_encoder.parameters())).dtype
        enable_vram_management(
            self.text_encoder,
            module_map = {
                torch.nn.Linear: AutoWrappedLinear,
                torch.nn.Embedding: AutoWrappedModule,
                T5RelativeEmbedding: AutoWrappedModule,
                T5LayerNorm: AutoWrappedModule,
            },
            module_config = dict(
                offload_dtype=dtype,
                offload_device="cpu",
                onload_dtype=dtype,
                onload_device="cpu",
                computation_dtype=self.torch_dtype,
                computation_device=self.device,
            ),
        )
        dtype = next(iter(self.dit.parameters())).dtype
        enable_vram_management(
            self.dit,
            module_map = {
                torch.nn.Linear: AutoWrappedLinear,
                torch.nn.Conv3d: AutoWrappedModule,
                torch.nn.LayerNorm: AutoWrappedModule,
                RMSNorm: AutoWrappedModule,
            },
            module_config = dict(
                offload_dtype=dtype,
                offload_device="cpu",
                onload_dtype=dtype,
                onload_device=self.device,
                computation_dtype=self.torch_dtype,
                computation_device=self.device,
            ),
            max_num_param=num_persistent_param_in_dit,
            overflow_module_config = dict(
                offload_dtype=dtype,
                offload_device="cpu",
                onload_dtype=dtype,
                onload_device="cpu",
                computation_dtype=self.torch_dtype,
                computation_device=self.device,
            ),
        )
        dtype = next(iter(self.vae.parameters())).dtype
        enable_vram_management(
            self.vae,
            module_map = {
                torch.nn.Linear: AutoWrappedLinear,
                torch.nn.Conv2d: AutoWrappedModule,
                RMS_norm: AutoWrappedModule,
                CausalConv3d: AutoWrappedModule,
                Upsample: AutoWrappedModule,
                torch.nn.SiLU: AutoWrappedModule,
                torch.nn.Dropout: AutoWrappedModule,
            },
            module_config = dict(
                offload_dtype=dtype,
                offload_device="cpu",
                onload_dtype=dtype,
                onload_device=self.device,
                computation_dtype=self.torch_dtype,
                computation_device=self.device,
            ),
        )
        if self.image_encoder is not None:
            dtype = next(iter(self.image_encoder.parameters())).dtype
            enable_vram_management(
                self.image_encoder,
                module_map = {
                    torch.nn.Linear: AutoWrappedLinear,
                    torch.nn.Conv2d: AutoWrappedModule,
                    torch.nn.LayerNorm: AutoWrappedModule,
                },
                module_config = dict(
                    offload_dtype=dtype,
                    offload_device="cpu",
                    onload_dtype=dtype,
                    onload_device="cpu",
                    computation_dtype=dtype,
                    computation_device=self.device,
                ),
            )
        self.enable_cpu_offload()


    def fetch_models(self, model_manager: ModelManager):
        text_encoder_model_and_path = model_manager.fetch_model("wan_video_text_encoder", require_model_path=True)
        if text_encoder_model_and_path is not None:
            self.text_encoder, tokenizer_path = text_encoder_model_and_path
            self.prompter.fetch_models(self.text_encoder)
            self.prompter.fetch_tokenizer(os.path.join(os.path.dirname(tokenizer_path), "google/umt5-xxl"))
        self.dit = model_manager.fetch_model("wan_video_dit")
        self.vae = model_manager.fetch_model("wan_video_vae")
        self.image_encoder = model_manager.fetch_model("wan_video_image_encoder")


    @staticmethod
    def from_model_manager(model_manager: ModelManager, torch_dtype=None, device=None):
        if device is None: device = model_manager.device
        if torch_dtype is None: torch_dtype = model_manager.torch_dtype
        pipe = WanVideoPipeline(device=device, torch_dtype=torch_dtype)
        pipe.fetch_models(model_manager)
        return pipe
    
    
    def denoising_model(self):
        return self.dit


    def encode_prompt(self, prompt, positive=True):
        prompt_emb = self.prompter.encode_prompt(prompt, positive=positive)
        return {"context": prompt_emb}
    
    
    def encode_image(self, image, num_frames, height, width):
        image = self.preprocess_image(image.resize((width, height))).to(self.device)
        clip_context = self.image_encoder.encode_image([image])
        msk = torch.ones(1, num_frames, height//8, width//8, device=self.device)
        msk[:, 1:] = 0
        msk = torch.concat([torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]], dim=1)
        msk = msk.view(1, msk.shape[1] // 4, 4, height//8, width//8)
        msk = msk.transpose(1, 2)[0]
        
        vae_input = torch.concat([image.transpose(0, 1), torch.zeros(3, num_frames-1, height, width).to(image.device)], dim=1)
        y = self.vae.encode([vae_input.to(dtype=self.torch_dtype, device=self.device)], device=self.device)[0]
        y = torch.concat([msk, y])
        y = y.unsqueeze(0)
        clip_context = clip_context.to(dtype=self.torch_dtype, device=self.device)
        y = y.to(dtype=self.torch_dtype, device=self.device)
        return {"clip_feature": clip_context, "y": y}


    def tensor2video(self, frames):
        frames = rearrange(frames, "C T H W -> T H W C")
        frames = ((frames.float() + 1) * 127.5).clip(0, 255).cpu().numpy().astype(np.uint8)
        frames = [Image.fromarray(frame) for frame in frames]
        return frames
    
    
    def prepare_extra_input(self, latents=None):
        return {}
    
    
    def encode_video(self, input_video, tiled=True, tile_size=(34, 34), tile_stride=(18, 16)):
        latents = self.vae.encode(input_video, device=self.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
        return latents
    
    
    def decode_video(self, latents, tiled=True, tile_size=(34, 34), tile_stride=(18, 16)):
        frames = self.vae.decode(latents, device=self.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
        return frames


    @torch.no_grad()
    def __call__(
        self,
        prompt,
        negative_prompt="",
        input_image=None,
        input_video=None,
        denoising_strength=1.0,
        seed=None,
        rand_device="cpu",
        height=480,
        width=832,
        num_frames=81,
        cfg_scale=5.0,
        num_inference_steps=50,
        sigma_shift=5.0,
        tiled=True,
        tile_size=(30, 52),
        tile_stride=(15, 26),
        tea_cache_l1_thresh=None,
        tea_cache_model_id="",
        progress_bar_cmd=tqdm,
        progress_bar_st=None,
    ):
        # Parameter check
        height, width = self.check_resize_height_width(height, width)
        if num_frames % 4 != 1:
            num_frames = (num_frames + 2) // 4 * 4 + 1
            print(f"Only `num_frames % 4 != 1` is acceptable. We round it up to {num_frames}.")
        
        # Tiler parameters
        tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride}

        # Scheduler
        self.scheduler.set_timesteps(num_inference_steps, denoising_strength=denoising_strength, shift=sigma_shift)

        # Initialize noise
        noise = self.generate_noise((1, 16, (num_frames - 1) // 4 + 1, height//8, width//8), seed=seed, device=rand_device, dtype=torch.float32)
        noise = noise.to(dtype=self.torch_dtype, device=self.device)
        if input_video is not None:
            self.load_models_to_device(['vae'])
            input_video = self.preprocess_images(input_video)
            input_video = torch.stack(input_video, dim=2).to(dtype=self.torch_dtype, device=self.device)
            latents = self.encode_video(input_video, **tiler_kwargs).to(dtype=self.torch_dtype, device=self.device)
            latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0])
        else:
            latents = noise
        
        # Encode prompts
        self.load_models_to_device(["text_encoder"])
        prompt_emb_posi = self.encode_prompt(prompt, positive=True)
        if cfg_scale != 1.0:
            prompt_emb_nega = self.encode_prompt(negative_prompt, positive=False)
            
        # Encode image
        if input_image is not None and self.image_encoder is not None:
            self.load_models_to_device(["image_encoder", "vae"])
            image_emb = self.encode_image(input_image, num_frames, height, width)
        else:
            image_emb = {}
            
        # Extra input
        extra_input = self.prepare_extra_input(latents)
        
        # TeaCache
        tea_cache_posi = {"tea_cache": TeaCache(num_inference_steps, rel_l1_thresh=tea_cache_l1_thresh, model_id=tea_cache_model_id) if tea_cache_l1_thresh is not None else None}
        tea_cache_nega = {"tea_cache": TeaCache(num_inference_steps, rel_l1_thresh=tea_cache_l1_thresh, model_id=tea_cache_model_id) if tea_cache_l1_thresh is not None else None}

        # Denoise
        self.load_models_to_device(["dit"])
        for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)):
            timestep = timestep.unsqueeze(0).to(dtype=self.torch_dtype, device=self.device)

            # Inference
            noise_pred_posi = model_fn_wan_video(self.dit, latents, timestep=timestep, **prompt_emb_posi, **image_emb, **extra_input, **tea_cache_posi)
            if cfg_scale != 1.0:
                noise_pred_nega = model_fn_wan_video(self.dit, latents, timestep=timestep, **prompt_emb_nega, **image_emb, **extra_input, **tea_cache_nega)
                noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega)
            else:
                noise_pred = noise_pred_posi

            # Scheduler
            latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents)

        # Decode
        self.load_models_to_device(['vae'])
        frames = self.decode_video(latents, **tiler_kwargs)
        self.load_models_to_device([])
        frames = self.tensor2video(frames[0])

        return frames



class TeaCache:
    def __init__(self, num_inference_steps, rel_l1_thresh, model_id):
        self.num_inference_steps = num_inference_steps
        self.step = 0
        self.accumulated_rel_l1_distance = 0
        self.previous_modulated_input = None
        self.rel_l1_thresh = rel_l1_thresh
        self.previous_residual = None
        self.previous_hidden_states = None
        
        self.coefficients_dict = {
            "Wan2.1-T2V-1.3B": [-5.21862437e+04, 9.23041404e+03, -5.28275948e+02, 1.36987616e+01, -4.99875664e-02],
            "Wan2.1-T2V-14B": [-3.03318725e+05, 4.90537029e+04, -2.65530556e+03, 5.87365115e+01, -3.15583525e-01],
            "Wan2.1-I2V-14B-480P": [2.57151496e+05, -3.54229917e+04,  1.40286849e+03, -1.35890334e+01, 1.32517977e-01],
            "Wan2.1-I2V-14B-720P": [ 8.10705460e+03,  2.13393892e+03, -3.72934672e+02,  1.66203073e+01, -4.17769401e-02],
        }
        if model_id not in self.coefficients_dict:
            supported_model_ids = ", ".join([i for i in self.coefficients_dict])
            raise ValueError(f"{model_id} is not a supported TeaCache model id. Please choose a valid model id in ({supported_model_ids}).")
        self.coefficients = self.coefficients_dict[model_id]

    def check(self, dit: WanModel, x, t_mod):
        modulated_inp = t_mod.clone()
        if self.step == 0 or self.step == self.num_inference_steps - 1:
            should_calc = True
            self.accumulated_rel_l1_distance = 0
        else:
            coefficients = self.coefficients
            rescale_func = np.poly1d(coefficients)
            self.accumulated_rel_l1_distance += rescale_func(((modulated_inp-self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item())
            if self.accumulated_rel_l1_distance < self.rel_l1_thresh:
                should_calc = False
            else:
                should_calc = True
                self.accumulated_rel_l1_distance = 0
        self.previous_modulated_input = modulated_inp
        self.step += 1
        if self.step == self.num_inference_steps:
            self.step = 0
        if should_calc:
            self.previous_hidden_states = x.clone()
        return not should_calc

    def store(self, hidden_states):
        self.previous_residual = hidden_states - self.previous_hidden_states
        self.previous_hidden_states = None

    def update(self, hidden_states):
        hidden_states = hidden_states + self.previous_residual
        return hidden_states



def model_fn_wan_video(
    dit: WanModel,
    x: torch.Tensor,
    timestep: torch.Tensor,
    context: torch.Tensor,
    clip_feature: Optional[torch.Tensor] = None,
    y: Optional[torch.Tensor] = None,
    tea_cache: TeaCache = None,
    **kwargs,
):
    t = dit.time_embedding(sinusoidal_embedding_1d(dit.freq_dim, timestep))
    t_mod = dit.time_projection(t).unflatten(1, (6, dit.dim))
    context = dit.text_embedding(context)
    
    if dit.has_image_input:
        x = torch.cat([x, y], dim=1)  # (b, c_x + c_y, f, h, w)
        clip_embdding = dit.img_emb(clip_feature)
        context = torch.cat([clip_embdding, context], dim=1)
    
    x, (f, h, w) = dit.patchify(x)
    
    freqs = torch.cat([
        dit.freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
        dit.freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
        dit.freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1)
    ], dim=-1).reshape(f * h * w, 1, -1).to(x.device)
    
    # TeaCache
    if tea_cache is not None:
        tea_cache_update = tea_cache.check(dit, x, t_mod)
    else:
        tea_cache_update = False
    
    if tea_cache_update:
        x = tea_cache.update(x)
    else:
        # blocks
        for block in dit.blocks:
            x = block(x, context, t_mod, freqs)
        if tea_cache is not None:
            tea_cache.store(x)

    x = dit.head(x, t)
    x = dit.unpatchify(x, (f, h, w))
    return x