Spaces:
Running
on
L40S
Running
on
L40S
File size: 13,574 Bytes
4bf9661 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
from .base_prompter import BasePrompter
from ..models.sd3_text_encoder import SD3TextEncoder1
from ..models.hunyuan_video_text_encoder import HunyuanVideoLLMEncoder, HunyuanVideoMLLMEncoder
from transformers import CLIPTokenizer, LlamaTokenizerFast, CLIPImageProcessor
import os, torch
from typing import Union
PROMPT_TEMPLATE_ENCODE = (
"<|start_header_id|>system<|end_header_id|>\n\nDescribe the image by detailing the color, shape, size, texture, "
"quantity, text, spatial relationships of the objects and background:<|eot_id|>"
"<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>")
PROMPT_TEMPLATE_ENCODE_VIDEO = (
"<|start_header_id|>system<|end_header_id|>\n\nDescribe the video by detailing the following aspects: "
"1. The main content and theme of the video."
"2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects."
"3. Actions, events, behaviors temporal relationships, physical movement changes of the objects."
"4. background environment, light, style and atmosphere."
"5. camera angles, movements, and transitions used in the video:<|eot_id|>"
"<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>")
PROMPT_TEMPLATE_ENCODE_I2V = (
"<|start_header_id|>system<|end_header_id|>\n\n<image>\nDescribe the image by detailing the color, shape, size, texture, "
"quantity, text, spatial relationships of the objects and background:<|eot_id|>"
"<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>"
"<|start_header_id|>assistant<|end_header_id|>\n\n"
)
PROMPT_TEMPLATE_ENCODE_VIDEO_I2V = (
"<|start_header_id|>system<|end_header_id|>\n\n<image>\nDescribe the video by detailing the following aspects according to the reference image: "
"1. The main content and theme of the video."
"2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects."
"3. Actions, events, behaviors temporal relationships, physical movement changes of the objects."
"4. background environment, light, style and atmosphere."
"5. camera angles, movements, and transitions used in the video:<|eot_id|>\n\n"
"<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>"
"<|start_header_id|>assistant<|end_header_id|>\n\n"
)
PROMPT_TEMPLATE = {
"dit-llm-encode": {
"template": PROMPT_TEMPLATE_ENCODE,
"crop_start": 36,
},
"dit-llm-encode-video": {
"template": PROMPT_TEMPLATE_ENCODE_VIDEO,
"crop_start": 95,
},
"dit-llm-encode-i2v": {
"template": PROMPT_TEMPLATE_ENCODE_I2V,
"crop_start": 36,
"image_emb_start": 5,
"image_emb_end": 581,
"image_emb_len": 576,
"double_return_token_id": 271
},
"dit-llm-encode-video-i2v": {
"template": PROMPT_TEMPLATE_ENCODE_VIDEO_I2V,
"crop_start": 103,
"image_emb_start": 5,
"image_emb_end": 581,
"image_emb_len": 576,
"double_return_token_id": 271
},
}
NEGATIVE_PROMPT = "Aerial view, aerial view, overexposed, low quality, deformation, a poor composition, bad hands, bad teeth, bad eyes, bad limbs, distortion"
class HunyuanVideoPrompter(BasePrompter):
def __init__(
self,
tokenizer_1_path=None,
tokenizer_2_path=None,
):
if tokenizer_1_path is None:
base_path = os.path.dirname(os.path.dirname(__file__))
tokenizer_1_path = os.path.join(
base_path, "tokenizer_configs/hunyuan_video/tokenizer_1")
if tokenizer_2_path is None:
base_path = os.path.dirname(os.path.dirname(__file__))
tokenizer_2_path = os.path.join(
base_path, "tokenizer_configs/hunyuan_video/tokenizer_2")
super().__init__()
self.tokenizer_1 = CLIPTokenizer.from_pretrained(tokenizer_1_path)
self.tokenizer_2 = LlamaTokenizerFast.from_pretrained(tokenizer_2_path, padding_side='right')
self.text_encoder_1: SD3TextEncoder1 = None
self.text_encoder_2: HunyuanVideoLLMEncoder = None
self.prompt_template = PROMPT_TEMPLATE['dit-llm-encode']
self.prompt_template_video = PROMPT_TEMPLATE['dit-llm-encode-video']
def fetch_models(self,
text_encoder_1: SD3TextEncoder1 = None,
text_encoder_2: Union[HunyuanVideoLLMEncoder, HunyuanVideoMLLMEncoder] = None):
self.text_encoder_1 = text_encoder_1
self.text_encoder_2 = text_encoder_2
if isinstance(text_encoder_2, HunyuanVideoMLLMEncoder):
# processor
# TODO: may need to replace processor with local implementation
base_path = os.path.dirname(os.path.dirname(__file__))
tokenizer_2_path = os.path.join(base_path, "tokenizer_configs/hunyuan_video/tokenizer_2")
self.processor = CLIPImageProcessor.from_pretrained(tokenizer_2_path)
# template
self.prompt_template = PROMPT_TEMPLATE['dit-llm-encode-i2v']
self.prompt_template_video = PROMPT_TEMPLATE['dit-llm-encode-video-i2v']
def apply_text_to_template(self, text, template):
assert isinstance(template, str)
if isinstance(text, list):
return [self.apply_text_to_template(text_) for text_ in text]
elif isinstance(text, str):
# Will send string to tokenizer. Used for llm
return template.format(text)
else:
raise TypeError(f"Unsupported prompt type: {type(text)}")
def encode_prompt_using_clip(self, prompt, max_length, device):
tokenized_result = self.tokenizer_1(
prompt,
return_tensors="pt",
padding="max_length",
max_length=max_length,
truncation=True,
return_attention_mask=True
)
input_ids = tokenized_result.input_ids.to(device)
attention_mask = tokenized_result.attention_mask.to(device)
return self.text_encoder_1(input_ids=input_ids, extra_mask=attention_mask)[0]
def encode_prompt_using_llm(self,
prompt,
max_length,
device,
crop_start,
hidden_state_skip_layer=2,
use_attention_mask=True):
max_length += crop_start
inputs = self.tokenizer_2(prompt,
return_tensors="pt",
padding="max_length",
max_length=max_length,
truncation=True)
input_ids = inputs.input_ids.to(device)
attention_mask = inputs.attention_mask.to(device)
last_hidden_state = self.text_encoder_2(input_ids, attention_mask, hidden_state_skip_layer)
# crop out
if crop_start > 0:
last_hidden_state = last_hidden_state[:, crop_start:]
attention_mask = (attention_mask[:, crop_start:] if use_attention_mask else None)
return last_hidden_state, attention_mask
def encode_prompt_using_mllm(self,
prompt,
images,
max_length,
device,
crop_start,
hidden_state_skip_layer=2,
use_attention_mask=True,
image_embed_interleave=4):
image_outputs = self.processor(images, return_tensors="pt")["pixel_values"].to(device)
max_length += crop_start
inputs = self.tokenizer_2(prompt,
return_tensors="pt",
padding="max_length",
max_length=max_length,
truncation=True)
input_ids = inputs.input_ids.to(device)
attention_mask = inputs.attention_mask.to(device)
last_hidden_state = self.text_encoder_2(input_ids=input_ids,
attention_mask=attention_mask,
hidden_state_skip_layer=hidden_state_skip_layer,
pixel_values=image_outputs)
text_crop_start = (crop_start - 1 + self.prompt_template_video.get("image_emb_len", 576))
image_crop_start = self.prompt_template_video.get("image_emb_start", 5)
image_crop_end = self.prompt_template_video.get("image_emb_end", 581)
batch_indices, last_double_return_token_indices = torch.where(
input_ids == self.prompt_template_video.get("double_return_token_id", 271))
if last_double_return_token_indices.shape[0] == 3:
# in case the prompt is too long
last_double_return_token_indices = torch.cat((
last_double_return_token_indices,
torch.tensor([input_ids.shape[-1]]),
))
batch_indices = torch.cat((batch_indices, torch.tensor([0])))
last_double_return_token_indices = (last_double_return_token_indices.reshape(input_ids.shape[0], -1)[:, -1])
batch_indices = batch_indices.reshape(input_ids.shape[0], -1)[:, -1]
assistant_crop_start = (last_double_return_token_indices - 1 + self.prompt_template_video.get("image_emb_len", 576) - 4)
assistant_crop_end = (last_double_return_token_indices - 1 + self.prompt_template_video.get("image_emb_len", 576))
attention_mask_assistant_crop_start = (last_double_return_token_indices - 4)
attention_mask_assistant_crop_end = last_double_return_token_indices
text_last_hidden_state = []
text_attention_mask = []
image_last_hidden_state = []
image_attention_mask = []
for i in range(input_ids.shape[0]):
text_last_hidden_state.append(
torch.cat([
last_hidden_state[i, text_crop_start:assistant_crop_start[i].item()],
last_hidden_state[i, assistant_crop_end[i].item():],
]))
text_attention_mask.append(
torch.cat([
attention_mask[
i,
crop_start:attention_mask_assistant_crop_start[i].item(),
],
attention_mask[i, attention_mask_assistant_crop_end[i].item():],
]) if use_attention_mask else None)
image_last_hidden_state.append(last_hidden_state[i, image_crop_start:image_crop_end])
image_attention_mask.append(
torch.ones(image_last_hidden_state[-1].shape[0]).to(last_hidden_state.device).
to(attention_mask.dtype) if use_attention_mask else None)
text_last_hidden_state = torch.stack(text_last_hidden_state)
text_attention_mask = torch.stack(text_attention_mask)
image_last_hidden_state = torch.stack(image_last_hidden_state)
image_attention_mask = torch.stack(image_attention_mask)
image_last_hidden_state = image_last_hidden_state[:, ::image_embed_interleave, :]
image_attention_mask = image_attention_mask[:, ::image_embed_interleave]
assert (text_last_hidden_state.shape[0] == text_attention_mask.shape[0] and
image_last_hidden_state.shape[0] == image_attention_mask.shape[0])
last_hidden_state = torch.cat([image_last_hidden_state, text_last_hidden_state], dim=1)
attention_mask = torch.cat([image_attention_mask, text_attention_mask], dim=1)
return last_hidden_state, attention_mask
def encode_prompt(self,
prompt,
images=None,
positive=True,
device="cuda",
clip_sequence_length=77,
llm_sequence_length=256,
data_type='video',
use_template=True,
hidden_state_skip_layer=2,
use_attention_mask=True,
image_embed_interleave=4):
prompt = self.process_prompt(prompt, positive=positive)
# apply template
if use_template:
template = self.prompt_template_video if data_type == 'video' else self.prompt_template
prompt_formated = self.apply_text_to_template(prompt, template['template'])
else:
prompt_formated = prompt
# Text encoder
if data_type == 'video':
crop_start = self.prompt_template_video.get("crop_start", 0)
else:
crop_start = self.prompt_template.get("crop_start", 0)
# CLIP
pooled_prompt_emb = self.encode_prompt_using_clip(prompt, clip_sequence_length, device)
# LLM
if images is None:
prompt_emb, attention_mask = self.encode_prompt_using_llm(prompt_formated, llm_sequence_length, device, crop_start,
hidden_state_skip_layer, use_attention_mask)
else:
prompt_emb, attention_mask = self.encode_prompt_using_mllm(prompt_formated, images, llm_sequence_length, device,
crop_start, hidden_state_skip_layer, use_attention_mask,
image_embed_interleave)
return prompt_emb, pooled_prompt_emb, attention_mask
|