Spaces:
Running
on
L40S
Running
on
L40S
File size: 15,938 Bytes
4bf9661 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
from transformers import AutoTokenizer, TextIteratorStreamer
import difflib
import torch
import numpy as np
import re
from ..models.model_manager import ModelManager
from PIL import Image
valid_colors = { # r, g, b
'aliceblue': (240, 248, 255), 'antiquewhite': (250, 235, 215), 'aqua': (0, 255, 255),
'aquamarine': (127, 255, 212), 'azure': (240, 255, 255), 'beige': (245, 245, 220),
'bisque': (255, 228, 196), 'black': (0, 0, 0), 'blanchedalmond': (255, 235, 205), 'blue': (0, 0, 255),
'blueviolet': (138, 43, 226), 'brown': (165, 42, 42), 'burlywood': (222, 184, 135),
'cadetblue': (95, 158, 160), 'chartreuse': (127, 255, 0), 'chocolate': (210, 105, 30),
'coral': (255, 127, 80), 'cornflowerblue': (100, 149, 237), 'cornsilk': (255, 248, 220),
'crimson': (220, 20, 60), 'cyan': (0, 255, 255), 'darkblue': (0, 0, 139), 'darkcyan': (0, 139, 139),
'darkgoldenrod': (184, 134, 11), 'darkgray': (169, 169, 169), 'darkgrey': (169, 169, 169),
'darkgreen': (0, 100, 0), 'darkkhaki': (189, 183, 107), 'darkmagenta': (139, 0, 139),
'darkolivegreen': (85, 107, 47), 'darkorange': (255, 140, 0), 'darkorchid': (153, 50, 204),
'darkred': (139, 0, 0), 'darksalmon': (233, 150, 122), 'darkseagreen': (143, 188, 143),
'darkslateblue': (72, 61, 139), 'darkslategray': (47, 79, 79), 'darkslategrey': (47, 79, 79),
'darkturquoise': (0, 206, 209), 'darkviolet': (148, 0, 211), 'deeppink': (255, 20, 147),
'deepskyblue': (0, 191, 255), 'dimgray': (105, 105, 105), 'dimgrey': (105, 105, 105),
'dodgerblue': (30, 144, 255), 'firebrick': (178, 34, 34), 'floralwhite': (255, 250, 240),
'forestgreen': (34, 139, 34), 'fuchsia': (255, 0, 255), 'gainsboro': (220, 220, 220),
'ghostwhite': (248, 248, 255), 'gold': (255, 215, 0), 'goldenrod': (218, 165, 32),
'gray': (128, 128, 128), 'grey': (128, 128, 128), 'green': (0, 128, 0), 'greenyellow': (173, 255, 47),
'honeydew': (240, 255, 240), 'hotpink': (255, 105, 180), 'indianred': (205, 92, 92),
'indigo': (75, 0, 130), 'ivory': (255, 255, 240), 'khaki': (240, 230, 140), 'lavender': (230, 230, 250),
'lavenderblush': (255, 240, 245), 'lawngreen': (124, 252, 0), 'lemonchiffon': (255, 250, 205),
'lightblue': (173, 216, 230), 'lightcoral': (240, 128, 128), 'lightcyan': (224, 255, 255),
'lightgoldenrodyellow': (250, 250, 210), 'lightgray': (211, 211, 211), 'lightgrey': (211, 211, 211),
'lightgreen': (144, 238, 144), 'lightpink': (255, 182, 193), 'lightsalmon': (255, 160, 122),
'lightseagreen': (32, 178, 170), 'lightskyblue': (135, 206, 250), 'lightslategray': (119, 136, 153),
'lightslategrey': (119, 136, 153), 'lightsteelblue': (176, 196, 222), 'lightyellow': (255, 255, 224),
'lime': (0, 255, 0), 'limegreen': (50, 205, 50), 'linen': (250, 240, 230), 'magenta': (255, 0, 255),
'maroon': (128, 0, 0), 'mediumaquamarine': (102, 205, 170), 'mediumblue': (0, 0, 205),
'mediumorchid': (186, 85, 211), 'mediumpurple': (147, 112, 219), 'mediumseagreen': (60, 179, 113),
'mediumslateblue': (123, 104, 238), 'mediumspringgreen': (0, 250, 154),
'mediumturquoise': (72, 209, 204), 'mediumvioletred': (199, 21, 133), 'midnightblue': (25, 25, 112),
'mintcream': (245, 255, 250), 'mistyrose': (255, 228, 225), 'moccasin': (255, 228, 181),
'navajowhite': (255, 222, 173), 'navy': (0, 0, 128), 'navyblue': (0, 0, 128),
'oldlace': (253, 245, 230), 'olive': (128, 128, 0), 'olivedrab': (107, 142, 35),
'orange': (255, 165, 0), 'orangered': (255, 69, 0), 'orchid': (218, 112, 214),
'palegoldenrod': (238, 232, 170), 'palegreen': (152, 251, 152), 'paleturquoise': (175, 238, 238),
'palevioletred': (219, 112, 147), 'papayawhip': (255, 239, 213), 'peachpuff': (255, 218, 185),
'peru': (205, 133, 63), 'pink': (255, 192, 203), 'plum': (221, 160, 221), 'powderblue': (176, 224, 230),
'purple': (128, 0, 128), 'rebeccapurple': (102, 51, 153), 'red': (255, 0, 0),
'rosybrown': (188, 143, 143), 'royalblue': (65, 105, 225), 'saddlebrown': (139, 69, 19),
'salmon': (250, 128, 114), 'sandybrown': (244, 164, 96), 'seagreen': (46, 139, 87),
'seashell': (255, 245, 238), 'sienna': (160, 82, 45), 'silver': (192, 192, 192),
'skyblue': (135, 206, 235), 'slateblue': (106, 90, 205), 'slategray': (112, 128, 144),
'slategrey': (112, 128, 144), 'snow': (255, 250, 250), 'springgreen': (0, 255, 127),
'steelblue': (70, 130, 180), 'tan': (210, 180, 140), 'teal': (0, 128, 128), 'thistle': (216, 191, 216),
'tomato': (255, 99, 71), 'turquoise': (64, 224, 208), 'violet': (238, 130, 238),
'wheat': (245, 222, 179), 'white': (255, 255, 255), 'whitesmoke': (245, 245, 245),
'yellow': (255, 255, 0), 'yellowgreen': (154, 205, 50)
}
valid_locations = { # x, y in 90*90
'in the center': (45, 45),
'on the left': (15, 45),
'on the right': (75, 45),
'on the top': (45, 15),
'on the bottom': (45, 75),
'on the top-left': (15, 15),
'on the top-right': (75, 15),
'on the bottom-left': (15, 75),
'on the bottom-right': (75, 75)
}
valid_offsets = { # x, y in 90*90
'no offset': (0, 0),
'slightly to the left': (-10, 0),
'slightly to the right': (10, 0),
'slightly to the upper': (0, -10),
'slightly to the lower': (0, 10),
'slightly to the upper-left': (-10, -10),
'slightly to the upper-right': (10, -10),
'slightly to the lower-left': (-10, 10),
'slightly to the lower-right': (10, 10)}
valid_areas = { # w, h in 90*90
"a small square area": (50, 50),
"a small vertical area": (40, 60),
"a small horizontal area": (60, 40),
"a medium-sized square area": (60, 60),
"a medium-sized vertical area": (50, 80),
"a medium-sized horizontal area": (80, 50),
"a large square area": (70, 70),
"a large vertical area": (60, 90),
"a large horizontal area": (90, 60)
}
def safe_str(x):
return x.strip(',. ') + '.'
def closest_name(input_str, options):
input_str = input_str.lower()
closest_match = difflib.get_close_matches(input_str, list(options.keys()), n=1, cutoff=0.5)
assert isinstance(closest_match, list) and len(closest_match) > 0, f'The value [{input_str}] is not valid!'
result = closest_match[0]
if result != input_str:
print(f'Automatically corrected [{input_str}] -> [{result}].')
return result
class Canvas:
@staticmethod
def from_bot_response(response: str):
matched = re.search(r'```python\n(.*?)\n```', response, re.DOTALL)
assert matched, 'Response does not contain codes!'
code_content = matched.group(1)
assert 'canvas = Canvas()' in code_content, 'Code block must include valid canvas var!'
local_vars = {'Canvas': Canvas}
exec(code_content, {}, local_vars)
canvas = local_vars.get('canvas', None)
assert isinstance(canvas, Canvas), 'Code block must produce valid canvas var!'
return canvas
def __init__(self):
self.components = []
self.color = None
self.record_tags = True
self.prefixes = []
self.suffixes = []
return
def set_global_description(self, description: str, detailed_descriptions: list, tags: str,
HTML_web_color_name: str):
assert isinstance(description, str), 'Global description is not valid!'
assert isinstance(detailed_descriptions, list) and all(isinstance(item, str) for item in detailed_descriptions), \
'Global detailed_descriptions is not valid!'
assert isinstance(tags, str), 'Global tags is not valid!'
HTML_web_color_name = closest_name(HTML_web_color_name, valid_colors)
self.color = np.array([[valid_colors[HTML_web_color_name]]], dtype=np.uint8)
self.prefixes = [description]
self.suffixes = detailed_descriptions
if self.record_tags:
self.suffixes = self.suffixes + [tags]
self.prefixes = [safe_str(x) for x in self.prefixes]
self.suffixes = [safe_str(x) for x in self.suffixes]
return
def add_local_description(self, location: str, offset: str, area: str, distance_to_viewer: float, description: str,
detailed_descriptions: list, tags: str, atmosphere: str, style: str,
quality_meta: str, HTML_web_color_name: str):
assert isinstance(description, str), 'Local description is wrong!'
assert isinstance(distance_to_viewer, (int, float)) and distance_to_viewer > 0, \
f'The distance_to_viewer for [{description}] is not positive float number!'
assert isinstance(detailed_descriptions, list) and all(isinstance(item, str) for item in detailed_descriptions), \
f'The detailed_descriptions for [{description}] is not valid!'
assert isinstance(tags, str), f'The tags for [{description}] is not valid!'
assert isinstance(atmosphere, str), f'The atmosphere for [{description}] is not valid!'
assert isinstance(style, str), f'The style for [{description}] is not valid!'
assert isinstance(quality_meta, str), f'The quality_meta for [{description}] is not valid!'
location = closest_name(location, valid_locations)
offset = closest_name(offset, valid_offsets)
area = closest_name(area, valid_areas)
HTML_web_color_name = closest_name(HTML_web_color_name, valid_colors)
xb, yb = valid_locations[location]
xo, yo = valid_offsets[offset]
w, h = valid_areas[area]
rect = (yb + yo - h // 2, yb + yo + h // 2, xb + xo - w // 2, xb + xo + w // 2)
rect = [max(0, min(90, i)) for i in rect]
color = np.array([[valid_colors[HTML_web_color_name]]], dtype=np.uint8)
prefixes = self.prefixes + [description]
suffixes = detailed_descriptions
if self.record_tags:
suffixes = suffixes + [tags, atmosphere, style, quality_meta]
prefixes = [safe_str(x) for x in prefixes]
suffixes = [safe_str(x) for x in suffixes]
self.components.append(dict(
rect=rect,
distance_to_viewer=distance_to_viewer,
color=color,
prefixes=prefixes,
suffixes=suffixes,
location=location,
))
return
def process(self):
# sort components
self.components = sorted(self.components, key=lambda x: x['distance_to_viewer'], reverse=True)
# compute initial latent
# print(self.color)
initial_latent = np.zeros(shape=(90, 90, 3), dtype=np.float32) + self.color
for component in self.components:
a, b, c, d = component['rect']
initial_latent[a:b, c:d] = 0.7 * component['color'] + 0.3 * initial_latent[a:b, c:d]
initial_latent = initial_latent.clip(0, 255).astype(np.uint8)
# compute conditions
bag_of_conditions = [
dict(mask=np.ones(shape=(90, 90), dtype=np.float32), prefixes=self.prefixes, suffixes=self.suffixes,location= "full")
]
for i, component in enumerate(self.components):
a, b, c, d = component['rect']
m = np.zeros(shape=(90, 90), dtype=np.float32)
m[a:b, c:d] = 1.0
bag_of_conditions.append(dict(
mask = m,
prefixes = component['prefixes'],
suffixes = component['suffixes'],
location = component['location'],
))
return dict(
initial_latent = initial_latent,
bag_of_conditions = bag_of_conditions,
)
class OmostPromter(torch.nn.Module):
def __init__(self,model = None,tokenizer = None, template = "",device="cpu"):
super().__init__()
self.model=model
self.tokenizer = tokenizer
self.device = device
if template == "":
template = r'''You are a helpful AI assistant to compose images using the below python class `Canvas`:
```python
class Canvas:
def set_global_description(self, description: str, detailed_descriptions: list[str], tags: str, HTML_web_color_name: str):
pass
def add_local_description(self, location: str, offset: str, area: str, distance_to_viewer: float, description: str, detailed_descriptions: list[str], tags: str, atmosphere: str, style: str, quality_meta: str, HTML_web_color_name: str):
assert location in ["in the center", "on the left", "on the right", "on the top", "on the bottom", "on the top-left", "on the top-right", "on the bottom-left", "on the bottom-right"]
assert offset in ["no offset", "slightly to the left", "slightly to the right", "slightly to the upper", "slightly to the lower", "slightly to the upper-left", "slightly to the upper-right", "slightly to the lower-left", "slightly to the lower-right"]
assert area in ["a small square area", "a small vertical area", "a small horizontal area", "a medium-sized square area", "a medium-sized vertical area", "a medium-sized horizontal area", "a large square area", "a large vertical area", "a large horizontal area"]
assert distance_to_viewer > 0
pass
```'''
self.template = template
@staticmethod
def from_model_manager(model_manager: ModelManager):
model, model_path = model_manager.fetch_model("omost_prompt", require_model_path=True)
tokenizer = AutoTokenizer.from_pretrained(model_path)
omost = OmostPromter(
model= model,
tokenizer = tokenizer,
device = model_manager.device
)
return omost
def __call__(self,prompt_dict:dict):
raw_prompt=prompt_dict["prompt"]
conversation = [{"role": "system", "content": self.template}]
conversation.append({"role": "user", "content": raw_prompt})
input_ids = self.tokenizer.apply_chat_template(conversation, return_tensors="pt", add_generation_prompt=True).to(self.device)
streamer = TextIteratorStreamer(self.tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
attention_mask = torch.ones(input_ids.shape, dtype=torch.bfloat16, device=self.device)
generate_kwargs = dict(
input_ids = input_ids,
streamer = streamer,
# stopping_criteria=stopping_criteria,
# max_new_tokens=max_new_tokens,
do_sample = True,
attention_mask = attention_mask,
pad_token_id = self.tokenizer.eos_token_id,
# temperature=temperature,
# top_p=top_p,
)
self.model.generate(**generate_kwargs)
outputs = []
for text in streamer:
outputs.append(text)
llm_outputs = "".join(outputs)
canvas = Canvas.from_bot_response(llm_outputs)
canvas_output = canvas.process()
prompts = [" ".join(_["prefixes"]+_["suffixes"][:2]) for _ in canvas_output["bag_of_conditions"]]
canvas_output["prompt"] = prompts[0]
canvas_output["prompts"] = prompts[1:]
raw_masks = [_["mask"] for _ in canvas_output["bag_of_conditions"]]
masks=[]
for mask in raw_masks:
mask[mask>0.5]=255
mask = np.stack([mask] * 3, axis=-1).astype("uint8")
masks.append(Image.fromarray(mask))
canvas_output["masks"] = masks
prompt_dict.update(canvas_output)
print(f"Your prompt is extended by Omost:\n")
cnt = 0
for component,pmt in zip(canvas_output["bag_of_conditions"],prompts):
loc = component["location"]
cnt += 1
print(f"Component {cnt} - Location : {loc}\nPrompt:{pmt}\n")
return prompt_dict
|