File size: 15,938 Bytes
4bf9661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
from transformers import AutoTokenizer, TextIteratorStreamer
import difflib
import torch
import numpy as np
import re
from ..models.model_manager import ModelManager
from PIL import Image

valid_colors = {  # r, g, b
    'aliceblue': (240, 248, 255), 'antiquewhite': (250, 235, 215), 'aqua': (0, 255, 255),
    'aquamarine': (127, 255, 212), 'azure': (240, 255, 255), 'beige': (245, 245, 220),
    'bisque': (255, 228, 196), 'black': (0, 0, 0), 'blanchedalmond': (255, 235, 205), 'blue': (0, 0, 255),
    'blueviolet': (138, 43, 226), 'brown': (165, 42, 42), 'burlywood': (222, 184, 135),
    'cadetblue': (95, 158, 160), 'chartreuse': (127, 255, 0), 'chocolate': (210, 105, 30),
    'coral': (255, 127, 80), 'cornflowerblue': (100, 149, 237), 'cornsilk': (255, 248, 220),
    'crimson': (220, 20, 60), 'cyan': (0, 255, 255), 'darkblue': (0, 0, 139), 'darkcyan': (0, 139, 139),
    'darkgoldenrod': (184, 134, 11), 'darkgray': (169, 169, 169), 'darkgrey': (169, 169, 169),
    'darkgreen': (0, 100, 0), 'darkkhaki': (189, 183, 107), 'darkmagenta': (139, 0, 139),
    'darkolivegreen': (85, 107, 47), 'darkorange': (255, 140, 0), 'darkorchid': (153, 50, 204),
    'darkred': (139, 0, 0), 'darksalmon': (233, 150, 122), 'darkseagreen': (143, 188, 143),
    'darkslateblue': (72, 61, 139), 'darkslategray': (47, 79, 79), 'darkslategrey': (47, 79, 79),
    'darkturquoise': (0, 206, 209), 'darkviolet': (148, 0, 211), 'deeppink': (255, 20, 147),
    'deepskyblue': (0, 191, 255), 'dimgray': (105, 105, 105), 'dimgrey': (105, 105, 105),
    'dodgerblue': (30, 144, 255), 'firebrick': (178, 34, 34), 'floralwhite': (255, 250, 240),
    'forestgreen': (34, 139, 34), 'fuchsia': (255, 0, 255), 'gainsboro': (220, 220, 220),
    'ghostwhite': (248, 248, 255), 'gold': (255, 215, 0), 'goldenrod': (218, 165, 32),
    'gray': (128, 128, 128), 'grey': (128, 128, 128), 'green': (0, 128, 0), 'greenyellow': (173, 255, 47),
    'honeydew': (240, 255, 240), 'hotpink': (255, 105, 180), 'indianred': (205, 92, 92),
    'indigo': (75, 0, 130), 'ivory': (255, 255, 240), 'khaki': (240, 230, 140), 'lavender': (230, 230, 250),
    'lavenderblush': (255, 240, 245), 'lawngreen': (124, 252, 0), 'lemonchiffon': (255, 250, 205),
    'lightblue': (173, 216, 230), 'lightcoral': (240, 128, 128), 'lightcyan': (224, 255, 255),
    'lightgoldenrodyellow': (250, 250, 210), 'lightgray': (211, 211, 211), 'lightgrey': (211, 211, 211),
    'lightgreen': (144, 238, 144), 'lightpink': (255, 182, 193), 'lightsalmon': (255, 160, 122),
    'lightseagreen': (32, 178, 170), 'lightskyblue': (135, 206, 250), 'lightslategray': (119, 136, 153),
    'lightslategrey': (119, 136, 153), 'lightsteelblue': (176, 196, 222), 'lightyellow': (255, 255, 224),
    'lime': (0, 255, 0), 'limegreen': (50, 205, 50), 'linen': (250, 240, 230), 'magenta': (255, 0, 255),
    'maroon': (128, 0, 0), 'mediumaquamarine': (102, 205, 170), 'mediumblue': (0, 0, 205),
    'mediumorchid': (186, 85, 211), 'mediumpurple': (147, 112, 219), 'mediumseagreen': (60, 179, 113),
    'mediumslateblue': (123, 104, 238), 'mediumspringgreen': (0, 250, 154),
    'mediumturquoise': (72, 209, 204), 'mediumvioletred': (199, 21, 133), 'midnightblue': (25, 25, 112),
    'mintcream': (245, 255, 250), 'mistyrose': (255, 228, 225), 'moccasin': (255, 228, 181),
    'navajowhite': (255, 222, 173), 'navy': (0, 0, 128), 'navyblue': (0, 0, 128),
    'oldlace': (253, 245, 230), 'olive': (128, 128, 0), 'olivedrab': (107, 142, 35),
    'orange': (255, 165, 0), 'orangered': (255, 69, 0), 'orchid': (218, 112, 214),
    'palegoldenrod': (238, 232, 170), 'palegreen': (152, 251, 152), 'paleturquoise': (175, 238, 238),
    'palevioletred': (219, 112, 147), 'papayawhip': (255, 239, 213), 'peachpuff': (255, 218, 185),
    'peru': (205, 133, 63), 'pink': (255, 192, 203), 'plum': (221, 160, 221), 'powderblue': (176, 224, 230),
    'purple': (128, 0, 128), 'rebeccapurple': (102, 51, 153), 'red': (255, 0, 0),
    'rosybrown': (188, 143, 143), 'royalblue': (65, 105, 225), 'saddlebrown': (139, 69, 19),
    'salmon': (250, 128, 114), 'sandybrown': (244, 164, 96), 'seagreen': (46, 139, 87),
    'seashell': (255, 245, 238), 'sienna': (160, 82, 45), 'silver': (192, 192, 192),
    'skyblue': (135, 206, 235), 'slateblue': (106, 90, 205), 'slategray': (112, 128, 144),
    'slategrey': (112, 128, 144), 'snow': (255, 250, 250), 'springgreen': (0, 255, 127),
    'steelblue': (70, 130, 180), 'tan': (210, 180, 140), 'teal': (0, 128, 128), 'thistle': (216, 191, 216),
    'tomato': (255, 99, 71), 'turquoise': (64, 224, 208), 'violet': (238, 130, 238),
    'wheat': (245, 222, 179), 'white': (255, 255, 255), 'whitesmoke': (245, 245, 245),
    'yellow': (255, 255, 0), 'yellowgreen': (154, 205, 50)
}

valid_locations = {  # x, y in 90*90
    'in the center': (45, 45),
    'on the left': (15, 45),
    'on the right': (75, 45),
    'on the top': (45, 15),
    'on the bottom': (45, 75),
    'on the top-left': (15, 15),
    'on the top-right': (75, 15),
    'on the bottom-left': (15, 75),
    'on the bottom-right': (75, 75)
}

valid_offsets = {  # x, y in 90*90
    'no offset': (0, 0),
    'slightly to the left': (-10, 0),
    'slightly to the right': (10, 0),
    'slightly to the upper': (0, -10),
    'slightly to the lower': (0, 10),
    'slightly to the upper-left': (-10, -10),
    'slightly to the upper-right': (10, -10),
    'slightly to the lower-left': (-10, 10),
    'slightly to the lower-right': (10, 10)}

valid_areas = {  # w, h in 90*90
    "a small square area": (50, 50),
    "a small vertical area": (40, 60),
    "a small horizontal area": (60, 40),
    "a medium-sized square area": (60, 60),
    "a medium-sized vertical area": (50, 80),
    "a medium-sized horizontal area": (80, 50),
    "a large square area": (70, 70),
    "a large vertical area": (60, 90),
    "a large horizontal area": (90, 60)
}

def safe_str(x):
    return x.strip(',. ') + '.'

def closest_name(input_str, options):
    input_str = input_str.lower()

    closest_match = difflib.get_close_matches(input_str, list(options.keys()), n=1, cutoff=0.5)
    assert isinstance(closest_match, list) and len(closest_match) > 0, f'The value [{input_str}] is not valid!'
    result = closest_match[0]

    if result != input_str:
        print(f'Automatically corrected [{input_str}] -> [{result}].')

    return result

class Canvas:
    @staticmethod
    def from_bot_response(response: str):
        
        matched = re.search(r'```python\n(.*?)\n```', response, re.DOTALL)
        assert matched, 'Response does not contain codes!'
        code_content = matched.group(1)
        assert 'canvas = Canvas()' in code_content, 'Code block must include valid canvas var!'
        local_vars = {'Canvas': Canvas}
        exec(code_content, {}, local_vars)
        canvas = local_vars.get('canvas', None)
        assert isinstance(canvas, Canvas), 'Code block must produce valid canvas var!'
        return canvas

    def __init__(self):
        self.components = []
        self.color = None
        self.record_tags = True
        self.prefixes = []
        self.suffixes = []
        return

    def set_global_description(self, description: str, detailed_descriptions: list, tags: str,
                               HTML_web_color_name: str):
        assert isinstance(description, str), 'Global description is not valid!'
        assert isinstance(detailed_descriptions, list) and all(isinstance(item, str) for item in detailed_descriptions), \
            'Global detailed_descriptions is not valid!'
        assert isinstance(tags, str), 'Global tags is not valid!'

        HTML_web_color_name = closest_name(HTML_web_color_name, valid_colors)
        self.color = np.array([[valid_colors[HTML_web_color_name]]], dtype=np.uint8)

        self.prefixes = [description]
        self.suffixes = detailed_descriptions

        if self.record_tags:
            self.suffixes = self.suffixes + [tags]

        self.prefixes = [safe_str(x) for x in self.prefixes]
        self.suffixes = [safe_str(x) for x in self.suffixes]

        return

    def add_local_description(self, location: str, offset: str, area: str, distance_to_viewer: float, description: str,
                              detailed_descriptions: list, tags: str, atmosphere: str, style: str,
                              quality_meta: str, HTML_web_color_name: str):
        assert isinstance(description, str), 'Local description is wrong!'
        assert isinstance(distance_to_viewer, (int, float)) and distance_to_viewer > 0, \
            f'The distance_to_viewer for [{description}] is not positive float number!'
        assert isinstance(detailed_descriptions, list) and all(isinstance(item, str) for item in detailed_descriptions), \
            f'The detailed_descriptions for [{description}] is not valid!'
        assert isinstance(tags, str), f'The tags for [{description}] is not valid!'
        assert isinstance(atmosphere, str), f'The atmosphere for [{description}] is not valid!'
        assert isinstance(style, str), f'The style for [{description}] is not valid!'
        assert isinstance(quality_meta, str), f'The quality_meta for [{description}] is not valid!'

        location = closest_name(location, valid_locations)
        offset = closest_name(offset, valid_offsets)
        area = closest_name(area, valid_areas)
        HTML_web_color_name = closest_name(HTML_web_color_name, valid_colors)

        xb, yb = valid_locations[location]
        xo, yo = valid_offsets[offset]
        w, h = valid_areas[area]
        rect = (yb + yo - h // 2, yb + yo + h // 2, xb + xo - w // 2, xb + xo + w // 2)
        rect = [max(0, min(90, i)) for i in rect]
        color = np.array([[valid_colors[HTML_web_color_name]]], dtype=np.uint8)

        prefixes = self.prefixes + [description]
        suffixes = detailed_descriptions

        if self.record_tags:
            suffixes = suffixes + [tags, atmosphere, style, quality_meta]

        prefixes = [safe_str(x) for x in prefixes]
        suffixes = [safe_str(x) for x in suffixes]

        self.components.append(dict(
            rect=rect,
            distance_to_viewer=distance_to_viewer,
            color=color,
            prefixes=prefixes,
            suffixes=suffixes,
            location=location,
        ))

        return

    def process(self):
        # sort components
        self.components = sorted(self.components, key=lambda x: x['distance_to_viewer'], reverse=True)

        # compute initial latent
        # print(self.color)
        initial_latent = np.zeros(shape=(90, 90, 3), dtype=np.float32) + self.color

        for component in self.components:
            a, b, c, d = component['rect']
            initial_latent[a:b, c:d] = 0.7 * component['color'] + 0.3 * initial_latent[a:b, c:d]

        initial_latent = initial_latent.clip(0, 255).astype(np.uint8)

        # compute conditions

        bag_of_conditions = [
            dict(mask=np.ones(shape=(90, 90), dtype=np.float32), prefixes=self.prefixes, suffixes=self.suffixes,location= "full")
        ]

        for i, component in enumerate(self.components):
            a, b, c, d = component['rect']
            m = np.zeros(shape=(90, 90), dtype=np.float32)
            m[a:b, c:d] = 1.0
            bag_of_conditions.append(dict(
                mask = m,
                prefixes = component['prefixes'],
                suffixes = component['suffixes'],
                location = component['location'],
            ))
            
        return dict(
            initial_latent = initial_latent,
            bag_of_conditions = bag_of_conditions,
        )


class OmostPromter(torch.nn.Module):
    
    def __init__(self,model = None,tokenizer = None, template = "",device="cpu"):
        super().__init__()
        self.model=model
        self.tokenizer = tokenizer
        self.device = device
        if template == "":
            template = r'''You are a helpful AI assistant to compose images using the below python class `Canvas`:
            ```python
            class Canvas:
                def set_global_description(self, description: str, detailed_descriptions: list[str], tags: str, HTML_web_color_name: str):
                    pass

                def add_local_description(self, location: str, offset: str, area: str, distance_to_viewer: float, description: str, detailed_descriptions: list[str], tags: str, atmosphere: str, style: str, quality_meta: str, HTML_web_color_name: str):
                    assert location in ["in the center", "on the left", "on the right", "on the top", "on the bottom", "on the top-left", "on the top-right", "on the bottom-left", "on the bottom-right"]
                    assert offset in ["no offset", "slightly to the left", "slightly to the right", "slightly to the upper", "slightly to the lower", "slightly to the upper-left", "slightly to the upper-right", "slightly to the lower-left", "slightly to the lower-right"]
                    assert area in ["a small square area", "a small vertical area", "a small horizontal area", "a medium-sized square area", "a medium-sized vertical area", "a medium-sized horizontal area", "a large square area", "a large vertical area", "a large horizontal area"]
                    assert distance_to_viewer > 0
                    pass
            ```'''
        self.template = template
        
    @staticmethod
    def from_model_manager(model_manager: ModelManager):
        model, model_path = model_manager.fetch_model("omost_prompt", require_model_path=True)
        tokenizer = AutoTokenizer.from_pretrained(model_path)
        omost = OmostPromter(
            model=  model,
            tokenizer = tokenizer,
            device = model_manager.device
        )
        return omost
    
    
    def __call__(self,prompt_dict:dict):
        raw_prompt=prompt_dict["prompt"]
        conversation = [{"role": "system", "content": self.template}]
        conversation.append({"role": "user", "content": raw_prompt})
        
        input_ids = self.tokenizer.apply_chat_template(conversation, return_tensors="pt", add_generation_prompt=True).to(self.device)
        streamer = TextIteratorStreamer(self.tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
        attention_mask = torch.ones(input_ids.shape, dtype=torch.bfloat16, device=self.device)
        
        generate_kwargs = dict(
            input_ids = input_ids,
            streamer = streamer,
            # stopping_criteria=stopping_criteria,
            # max_new_tokens=max_new_tokens,
            do_sample = True,
            attention_mask = attention_mask,
            pad_token_id = self.tokenizer.eos_token_id,
            # temperature=temperature,
            # top_p=top_p,
        )
        self.model.generate(**generate_kwargs)
        outputs = []
        for text in streamer:
            outputs.append(text)
        llm_outputs = "".join(outputs)
        
        canvas = Canvas.from_bot_response(llm_outputs)
        canvas_output = canvas.process()
        
        prompts = [" ".join(_["prefixes"]+_["suffixes"][:2]) for _ in canvas_output["bag_of_conditions"]]
        canvas_output["prompt"] = prompts[0]
        canvas_output["prompts"] = prompts[1:]
        
        raw_masks = [_["mask"] for _ in canvas_output["bag_of_conditions"]]
        masks=[]
        for mask in raw_masks:
            mask[mask>0.5]=255
            mask = np.stack([mask] * 3, axis=-1).astype("uint8")
            masks.append(Image.fromarray(mask))
            
        canvas_output["masks"] = masks
        prompt_dict.update(canvas_output)
        print(f"Your prompt is extended by Omost:\n")
        cnt = 0
        for component,pmt in zip(canvas_output["bag_of_conditions"],prompts):
            loc = component["location"]
            cnt += 1
            print(f"Component {cnt} - Location : {loc}\nPrompt:{pmt}\n")
        
        return prompt_dict