jbilcke-hf's picture
jbilcke-hf HF Staff
Upload 210 files
4bf9661 verified
from ..models import ModelManager, SD3TextEncoder1, SD3TextEncoder2, SD3TextEncoder3, SD3DiT, SD3VAEDecoder, SD3VAEEncoder
from ..prompters import SD3Prompter
from ..schedulers import FlowMatchScheduler
from .base import BasePipeline
import torch
from tqdm import tqdm
class SD3ImagePipeline(BasePipeline):
def __init__(self, device="cuda", torch_dtype=torch.float16):
super().__init__(device=device, torch_dtype=torch_dtype, height_division_factor=16, width_division_factor=16)
self.scheduler = FlowMatchScheduler()
self.prompter = SD3Prompter()
# models
self.text_encoder_1: SD3TextEncoder1 = None
self.text_encoder_2: SD3TextEncoder2 = None
self.text_encoder_3: SD3TextEncoder3 = None
self.dit: SD3DiT = None
self.vae_decoder: SD3VAEDecoder = None
self.vae_encoder: SD3VAEEncoder = None
self.model_names = ['text_encoder_1', 'text_encoder_2', 'text_encoder_3', 'dit', 'vae_decoder', 'vae_encoder']
def denoising_model(self):
return self.dit
def fetch_models(self, model_manager: ModelManager, prompt_refiner_classes=[]):
self.text_encoder_1 = model_manager.fetch_model("sd3_text_encoder_1")
self.text_encoder_2 = model_manager.fetch_model("sd3_text_encoder_2")
self.text_encoder_3 = model_manager.fetch_model("sd3_text_encoder_3")
self.dit = model_manager.fetch_model("sd3_dit")
self.vae_decoder = model_manager.fetch_model("sd3_vae_decoder")
self.vae_encoder = model_manager.fetch_model("sd3_vae_encoder")
self.prompter.fetch_models(self.text_encoder_1, self.text_encoder_2, self.text_encoder_3)
self.prompter.load_prompt_refiners(model_manager, prompt_refiner_classes)
@staticmethod
def from_model_manager(model_manager: ModelManager, prompt_refiner_classes=[], device=None):
pipe = SD3ImagePipeline(
device=model_manager.device if device is None else device,
torch_dtype=model_manager.torch_dtype,
)
pipe.fetch_models(model_manager, prompt_refiner_classes)
return pipe
def encode_image(self, image, tiled=False, tile_size=64, tile_stride=32):
latents = self.vae_encoder(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
return latents
def decode_image(self, latent, tiled=False, tile_size=64, tile_stride=32):
image = self.vae_decoder(latent.to(self.device), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
image = self.vae_output_to_image(image)
return image
def encode_prompt(self, prompt, positive=True, t5_sequence_length=77):
prompt_emb, pooled_prompt_emb = self.prompter.encode_prompt(
prompt, device=self.device, positive=positive, t5_sequence_length=t5_sequence_length
)
return {"prompt_emb": prompt_emb, "pooled_prompt_emb": pooled_prompt_emb}
def prepare_extra_input(self, latents=None):
return {}
@torch.no_grad()
def __call__(
self,
prompt,
local_prompts=[],
masks=[],
mask_scales=[],
negative_prompt="",
cfg_scale=7.5,
input_image=None,
denoising_strength=1.0,
height=1024,
width=1024,
num_inference_steps=20,
t5_sequence_length=77,
tiled=False,
tile_size=128,
tile_stride=64,
seed=None,
progress_bar_cmd=tqdm,
progress_bar_st=None,
):
height, width = self.check_resize_height_width(height, width)
# Tiler parameters
tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride}
# Prepare scheduler
self.scheduler.set_timesteps(num_inference_steps, denoising_strength)
# Prepare latent tensors
if input_image is not None:
self.load_models_to_device(['vae_encoder'])
image = self.preprocess_image(input_image).to(device=self.device, dtype=self.torch_dtype)
latents = self.encode_image(image, **tiler_kwargs)
noise = self.generate_noise((1, 16, height//8, width//8), seed=seed, device=self.device, dtype=self.torch_dtype)
latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0])
else:
latents = self.generate_noise((1, 16, height//8, width//8), seed=seed, device=self.device, dtype=self.torch_dtype)
# Encode prompts
self.load_models_to_device(['text_encoder_1', 'text_encoder_2', 'text_encoder_3'])
prompt_emb_posi = self.encode_prompt(prompt, positive=True, t5_sequence_length=t5_sequence_length)
prompt_emb_nega = self.encode_prompt(negative_prompt, positive=False, t5_sequence_length=t5_sequence_length)
prompt_emb_locals = [self.encode_prompt(prompt_local, t5_sequence_length=t5_sequence_length) for prompt_local in local_prompts]
# Denoise
self.load_models_to_device(['dit'])
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)):
timestep = timestep.unsqueeze(0).to(self.device)
# Classifier-free guidance
inference_callback = lambda prompt_emb_posi: self.dit(
latents, timestep=timestep, **prompt_emb_posi, **tiler_kwargs,
)
noise_pred_posi = self.control_noise_via_local_prompts(prompt_emb_posi, prompt_emb_locals, masks, mask_scales, inference_callback)
noise_pred_nega = self.dit(
latents, timestep=timestep, **prompt_emb_nega, **tiler_kwargs,
)
noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega)
# DDIM
latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents)
# UI
if progress_bar_st is not None:
progress_bar_st.progress(progress_id / len(self.scheduler.timesteps))
# Decode image
self.load_models_to_device(['vae_decoder'])
image = self.decode_image(latents, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
# offload all models
self.load_models_to_device([])
return image