Spaces:
Running
on
L40S
Running
on
L40S
from ..models import ModelManager | |
from ..models.hunyuan_dit_text_encoder import HunyuanDiTCLIPTextEncoder | |
from ..models.stepvideo_text_encoder import STEP1TextEncoder | |
from ..models.stepvideo_dit import StepVideoModel | |
from ..models.stepvideo_vae import StepVideoVAE | |
from ..schedulers.flow_match import FlowMatchScheduler | |
from .base import BasePipeline | |
from ..prompters import StepVideoPrompter | |
import torch | |
from einops import rearrange | |
import numpy as np | |
from PIL import Image | |
from ..vram_management import enable_vram_management, AutoWrappedModule, AutoWrappedLinear | |
from transformers.models.bert.modeling_bert import BertEmbeddings | |
from ..models.stepvideo_dit import RMSNorm | |
from ..models.stepvideo_vae import CausalConv, CausalConvAfterNorm, Upsample2D, BaseGroupNorm | |
class StepVideoPipeline(BasePipeline): | |
def __init__(self, device="cuda", torch_dtype=torch.float16): | |
super().__init__(device=device, torch_dtype=torch_dtype) | |
self.scheduler = FlowMatchScheduler(sigma_min=0.0, extra_one_step=True, shift=13.0, reverse_sigmas=True, num_train_timesteps=1) | |
self.prompter = StepVideoPrompter() | |
self.text_encoder_1: HunyuanDiTCLIPTextEncoder = None | |
self.text_encoder_2: STEP1TextEncoder = None | |
self.dit: StepVideoModel = None | |
self.vae: StepVideoVAE = None | |
self.model_names = ['text_encoder_1', 'text_encoder_2', 'dit', 'vae'] | |
def enable_vram_management(self, num_persistent_param_in_dit=None): | |
dtype = next(iter(self.text_encoder_1.parameters())).dtype | |
enable_vram_management( | |
self.text_encoder_1, | |
module_map = { | |
torch.nn.Linear: AutoWrappedLinear, | |
BertEmbeddings: AutoWrappedModule, | |
torch.nn.LayerNorm: AutoWrappedModule, | |
}, | |
module_config = dict( | |
offload_dtype=dtype, | |
offload_device="cpu", | |
onload_dtype=dtype, | |
onload_device="cpu", | |
computation_dtype=torch.float32, | |
computation_device=self.device, | |
), | |
) | |
dtype = next(iter(self.text_encoder_2.parameters())).dtype | |
enable_vram_management( | |
self.text_encoder_2, | |
module_map = { | |
torch.nn.Linear: AutoWrappedLinear, | |
RMSNorm: AutoWrappedModule, | |
torch.nn.Embedding: AutoWrappedModule, | |
}, | |
module_config = dict( | |
offload_dtype=dtype, | |
offload_device="cpu", | |
onload_dtype=dtype, | |
onload_device="cpu", | |
computation_dtype=self.torch_dtype, | |
computation_device=self.device, | |
), | |
) | |
dtype = next(iter(self.dit.parameters())).dtype | |
enable_vram_management( | |
self.dit, | |
module_map = { | |
torch.nn.Linear: AutoWrappedLinear, | |
torch.nn.Conv2d: AutoWrappedModule, | |
torch.nn.LayerNorm: AutoWrappedModule, | |
RMSNorm: AutoWrappedModule, | |
}, | |
module_config = dict( | |
offload_dtype=dtype, | |
offload_device="cpu", | |
onload_dtype=dtype, | |
onload_device=self.device, | |
computation_dtype=self.torch_dtype, | |
computation_device=self.device, | |
), | |
max_num_param=num_persistent_param_in_dit, | |
overflow_module_config = dict( | |
offload_dtype=dtype, | |
offload_device="cpu", | |
onload_dtype=dtype, | |
onload_device="cpu", | |
computation_dtype=self.torch_dtype, | |
computation_device=self.device, | |
), | |
) | |
dtype = next(iter(self.vae.parameters())).dtype | |
enable_vram_management( | |
self.vae, | |
module_map = { | |
torch.nn.Linear: AutoWrappedLinear, | |
torch.nn.Conv3d: AutoWrappedModule, | |
CausalConv: AutoWrappedModule, | |
CausalConvAfterNorm: AutoWrappedModule, | |
Upsample2D: AutoWrappedModule, | |
BaseGroupNorm: AutoWrappedModule, | |
}, | |
module_config = dict( | |
offload_dtype=dtype, | |
offload_device="cpu", | |
onload_dtype=dtype, | |
onload_device="cpu", | |
computation_dtype=self.torch_dtype, | |
computation_device=self.device, | |
), | |
) | |
self.enable_cpu_offload() | |
def fetch_models(self, model_manager: ModelManager): | |
self.text_encoder_1 = model_manager.fetch_model("hunyuan_dit_clip_text_encoder") | |
self.text_encoder_2 = model_manager.fetch_model("stepvideo_text_encoder_2") | |
self.dit = model_manager.fetch_model("stepvideo_dit") | |
self.vae = model_manager.fetch_model("stepvideo_vae") | |
self.prompter.fetch_models(self.text_encoder_1, self.text_encoder_2) | |
def from_model_manager(model_manager: ModelManager, torch_dtype=None, device=None): | |
if device is None: device = model_manager.device | |
if torch_dtype is None: torch_dtype = model_manager.torch_dtype | |
pipe = StepVideoPipeline(device=device, torch_dtype=torch_dtype) | |
pipe.fetch_models(model_manager) | |
return pipe | |
def encode_prompt(self, prompt, positive=True): | |
clip_embeds, llm_embeds, llm_mask = self.prompter.encode_prompt(prompt, device=self.device, positive=positive) | |
clip_embeds = clip_embeds.to(dtype=self.torch_dtype, device=self.device) | |
llm_embeds = llm_embeds.to(dtype=self.torch_dtype, device=self.device) | |
llm_mask = llm_mask.to(dtype=self.torch_dtype, device=self.device) | |
return {"encoder_hidden_states_2": clip_embeds, "encoder_hidden_states": llm_embeds, "encoder_attention_mask": llm_mask} | |
def tensor2video(self, frames): | |
frames = rearrange(frames, "C T H W -> T H W C") | |
frames = ((frames.float() + 1) * 127.5).clip(0, 255).cpu().numpy().astype(np.uint8) | |
frames = [Image.fromarray(frame) for frame in frames] | |
return frames | |
def __call__( | |
self, | |
prompt, | |
negative_prompt="", | |
input_video=None, | |
denoising_strength=1.0, | |
seed=None, | |
rand_device="cpu", | |
height=544, | |
width=992, | |
num_frames=204, | |
cfg_scale=9.0, | |
num_inference_steps=30, | |
tiled=True, | |
tile_size=(34, 34), | |
tile_stride=(16, 16), | |
smooth_scale=0.6, | |
progress_bar_cmd=lambda x: x, | |
progress_bar_st=None, | |
): | |
# Tiler parameters | |
tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride} | |
# Scheduler | |
self.scheduler.set_timesteps(num_inference_steps, denoising_strength) | |
# Initialize noise | |
latents = self.generate_noise((1, max(num_frames//17*3, 1), 64, height//16, width//16), seed=seed, device=rand_device, dtype=self.torch_dtype).to(self.device) | |
# Encode prompts | |
self.load_models_to_device(["text_encoder_1", "text_encoder_2"]) | |
prompt_emb_posi = self.encode_prompt(prompt, positive=True) | |
if cfg_scale != 1.0: | |
prompt_emb_nega = self.encode_prompt(negative_prompt, positive=False) | |
# Denoise | |
self.load_models_to_device(["dit"]) | |
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)): | |
timestep = timestep.unsqueeze(0).to(dtype=self.torch_dtype, device=self.device) | |
print(f"Step {progress_id + 1} / {len(self.scheduler.timesteps)}") | |
# Inference | |
noise_pred_posi = self.dit(latents, timestep=timestep, **prompt_emb_posi) | |
if cfg_scale != 1.0: | |
noise_pred_nega = self.dit(latents, timestep=timestep, **prompt_emb_nega) | |
noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega) | |
else: | |
noise_pred = noise_pred_posi | |
# Scheduler | |
latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents) | |
# Decode | |
self.load_models_to_device(['vae']) | |
frames = self.vae.decode(latents, device=self.device, smooth_scale=smooth_scale, **tiler_kwargs) | |
self.load_models_to_device([]) | |
frames = self.tensor2video(frames[0]) | |
return frames | |