Spaces:
Running
on
L40S
Running
on
L40S
from .base_prompter import BasePrompter | |
from ..models.flux_text_encoder import FluxTextEncoder2 | |
from transformers import T5TokenizerFast | |
import os | |
class CogPrompter(BasePrompter): | |
def __init__( | |
self, | |
tokenizer_path=None | |
): | |
if tokenizer_path is None: | |
base_path = os.path.dirname(os.path.dirname(__file__)) | |
tokenizer_path = os.path.join(base_path, "tokenizer_configs/cog/tokenizer") | |
super().__init__() | |
self.tokenizer = T5TokenizerFast.from_pretrained(tokenizer_path) | |
self.text_encoder: FluxTextEncoder2 = None | |
def fetch_models(self, text_encoder: FluxTextEncoder2 = None): | |
self.text_encoder = text_encoder | |
def encode_prompt_using_t5(self, prompt, text_encoder, tokenizer, max_length, device): | |
input_ids = tokenizer( | |
prompt, | |
return_tensors="pt", | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
).input_ids.to(device) | |
prompt_emb = text_encoder(input_ids) | |
prompt_emb = prompt_emb.reshape((1, prompt_emb.shape[0]*prompt_emb.shape[1], -1)) | |
return prompt_emb | |
def encode_prompt( | |
self, | |
prompt, | |
positive=True, | |
device="cuda" | |
): | |
prompt = self.process_prompt(prompt, positive=positive) | |
prompt_emb = self.encode_prompt_using_t5(prompt, self.text_encoder, self.tokenizer, 226, device) | |
return prompt_emb | |