ReCamMaster / diffsynth /prompters /cog_prompter.py
jbilcke-hf's picture
jbilcke-hf HF Staff
Upload 210 files
4bf9661 verified
from .base_prompter import BasePrompter
from ..models.flux_text_encoder import FluxTextEncoder2
from transformers import T5TokenizerFast
import os
class CogPrompter(BasePrompter):
def __init__(
self,
tokenizer_path=None
):
if tokenizer_path is None:
base_path = os.path.dirname(os.path.dirname(__file__))
tokenizer_path = os.path.join(base_path, "tokenizer_configs/cog/tokenizer")
super().__init__()
self.tokenizer = T5TokenizerFast.from_pretrained(tokenizer_path)
self.text_encoder: FluxTextEncoder2 = None
def fetch_models(self, text_encoder: FluxTextEncoder2 = None):
self.text_encoder = text_encoder
def encode_prompt_using_t5(self, prompt, text_encoder, tokenizer, max_length, device):
input_ids = tokenizer(
prompt,
return_tensors="pt",
padding="max_length",
max_length=max_length,
truncation=True,
).input_ids.to(device)
prompt_emb = text_encoder(input_ids)
prompt_emb = prompt_emb.reshape((1, prompt_emb.shape[0]*prompt_emb.shape[1], -1))
return prompt_emb
def encode_prompt(
self,
prompt,
positive=True,
device="cuda"
):
prompt = self.process_prompt(prompt, positive=positive)
prompt_emb = self.encode_prompt_using_t5(prompt, self.text_encoder, self.tokenizer, 226, device)
return prompt_emb