ReCamMaster / diffsynth /prompters /flux_prompter.py
jbilcke-hf's picture
jbilcke-hf HF Staff
Upload 210 files
4bf9661 verified
from .base_prompter import BasePrompter
from ..models.flux_text_encoder import FluxTextEncoder2
from ..models.sd3_text_encoder import SD3TextEncoder1
from transformers import CLIPTokenizer, T5TokenizerFast
import os, torch
class FluxPrompter(BasePrompter):
def __init__(
self,
tokenizer_1_path=None,
tokenizer_2_path=None
):
if tokenizer_1_path is None:
base_path = os.path.dirname(os.path.dirname(__file__))
tokenizer_1_path = os.path.join(base_path, "tokenizer_configs/flux/tokenizer_1")
if tokenizer_2_path is None:
base_path = os.path.dirname(os.path.dirname(__file__))
tokenizer_2_path = os.path.join(base_path, "tokenizer_configs/flux/tokenizer_2")
super().__init__()
self.tokenizer_1 = CLIPTokenizer.from_pretrained(tokenizer_1_path)
self.tokenizer_2 = T5TokenizerFast.from_pretrained(tokenizer_2_path)
self.text_encoder_1: SD3TextEncoder1 = None
self.text_encoder_2: FluxTextEncoder2 = None
def fetch_models(self, text_encoder_1: SD3TextEncoder1 = None, text_encoder_2: FluxTextEncoder2 = None):
self.text_encoder_1 = text_encoder_1
self.text_encoder_2 = text_encoder_2
def encode_prompt_using_clip(self, prompt, text_encoder, tokenizer, max_length, device):
input_ids = tokenizer(
prompt,
return_tensors="pt",
padding="max_length",
max_length=max_length,
truncation=True
).input_ids.to(device)
pooled_prompt_emb, _ = text_encoder(input_ids)
return pooled_prompt_emb
def encode_prompt_using_t5(self, prompt, text_encoder, tokenizer, max_length, device):
input_ids = tokenizer(
prompt,
return_tensors="pt",
padding="max_length",
max_length=max_length,
truncation=True,
).input_ids.to(device)
prompt_emb = text_encoder(input_ids)
return prompt_emb
def encode_prompt(
self,
prompt,
positive=True,
device="cuda",
t5_sequence_length=512,
):
prompt = self.process_prompt(prompt, positive=positive)
# CLIP
pooled_prompt_emb = self.encode_prompt_using_clip(prompt, self.text_encoder_1, self.tokenizer_1, 77, device)
# T5
prompt_emb = self.encode_prompt_using_t5(prompt, self.text_encoder_2, self.tokenizer_2, t5_sequence_length, device)
# text_ids
text_ids = torch.zeros(prompt_emb.shape[0], prompt_emb.shape[1], 3).to(device=device, dtype=prompt_emb.dtype)
return prompt_emb, pooled_prompt_emb, text_ids