Spaces:
Running
on
L40S
Running
on
L40S
from .base_prompter import BasePrompter | |
from ..models.hunyuan_dit_text_encoder import HunyuanDiTCLIPTextEncoder | |
from ..models.stepvideo_text_encoder import STEP1TextEncoder | |
from transformers import BertTokenizer | |
import os, torch | |
class StepVideoPrompter(BasePrompter): | |
def __init__( | |
self, | |
tokenizer_1_path=None, | |
): | |
if tokenizer_1_path is None: | |
base_path = os.path.dirname(os.path.dirname(__file__)) | |
tokenizer_1_path = os.path.join( | |
base_path, "tokenizer_configs/hunyuan_dit/tokenizer") | |
super().__init__() | |
self.tokenizer_1 = BertTokenizer.from_pretrained(tokenizer_1_path) | |
def fetch_models(self, text_encoder_1: HunyuanDiTCLIPTextEncoder = None, text_encoder_2: STEP1TextEncoder = None): | |
self.text_encoder_1 = text_encoder_1 | |
self.text_encoder_2 = text_encoder_2 | |
def encode_prompt_using_clip(self, prompt, max_length, device): | |
text_inputs = self.tokenizer_1( | |
prompt, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_attention_mask=True, | |
return_tensors="pt", | |
) | |
prompt_embeds = self.text_encoder_1( | |
text_inputs.input_ids.to(device), | |
attention_mask=text_inputs.attention_mask.to(device), | |
) | |
return prompt_embeds | |
def encode_prompt_using_llm(self, prompt, max_length, device): | |
y, y_mask = self.text_encoder_2(prompt, max_length=max_length, device=device) | |
return y, y_mask | |
def encode_prompt(self, | |
prompt, | |
positive=True, | |
device="cuda"): | |
prompt = self.process_prompt(prompt, positive=positive) | |
clip_embeds = self.encode_prompt_using_clip(prompt, max_length=77, device=device) | |
llm_embeds, llm_mask = self.encode_prompt_using_llm(prompt, max_length=320, device=device) | |
llm_mask = torch.nn.functional.pad(llm_mask, (clip_embeds.shape[1], 0), value=1) | |
return clip_embeds, llm_embeds, llm_mask | |