File size: 16,449 Bytes
9fd1204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
import pathlib
from typing import Any, Callable, Dict, Iterable, List, Optional, Union

import torch
from tqdm.auto import tqdm

from finetrainers.logging import get_logger
from finetrainers.utils import delete_files


logger = get_logger()

PRECOMPUTED_DATA_DIR = "finetrainers-precomputed-data"


def initialize_preprocessor(
    rank: int,
    world_size: int,
    num_items: int,
    processor_fn: Dict[str, Callable[[Dict[str, Any]], Dict[str, Any]]],
    save_dir: Optional[str] = None,
    enable_precomputation: bool = False,
    enable_reuse: bool = False,
) -> Union["InMemoryDistributedDataPreprocessor", "PrecomputedDistributedDataPreprocessor"]:
    if enable_precomputation:
        return PrecomputedDistributedDataPreprocessor(
            rank, world_size, num_items, processor_fn, save_dir, enable_reuse
        )
    return InMemoryDistributedDataPreprocessor(rank, num_items, processor_fn)


class DistributedDataProcessorMixin:
    def consume(self, *args, **kwargs):
        raise NotImplementedError("DistributedDataProcessorMixin::consume must be implemented by the subclass.")

    def consume_once(self, *args, **kwargs):
        raise NotImplementedError("DistributedDataProcessorMixin::consume_once must be implemented by the subclass.")

    @property
    def requires_data(self):
        raise NotImplementedError("DistributedDataProcessorMixin::requires_data must be implemented by the subclass.")


class InMemoryDistributedDataPreprocessor(DistributedDataProcessorMixin):
    def __init__(
        self, rank: int, num_items: int, processor_fn: Dict[str, Callable[[Dict[str, Any]], Dict[str, Any]]]
    ) -> None:
        super().__init__()

        self._rank = rank
        self._num_items = num_items
        self._processor_fn = processor_fn

        self._cached_samples = []
        self._buffer = InMemoryDataBuffer(num_items)
        self._preprocessed_iterator: Union["InMemoryDataIterable", "InMemoryOnceDataIterable"] = None

    def consume(
        self,
        data_type: str,
        components: Dict[str, Any],
        data_iterator,
        generator: Optional[torch.Generator] = None,
        cache_samples: bool = False,
        use_cached_samples: bool = False,
        drop_samples: bool = False,
    ) -> Iterable[Dict[str, Any]]:
        if data_type not in self._processor_fn.keys():
            raise ValueError(f"Invalid data type: {data_type}. Supported types: {list(self._processor_fn.keys())}")
        if cache_samples:
            if use_cached_samples:
                raise ValueError("Cannot cache and use cached samples at the same time.")
            if drop_samples:
                raise ValueError("Cannot cache and drop samples at the same time.")

        for i in range(self._num_items):
            if use_cached_samples:
                item = self._cached_samples[i]
            else:
                item = next(data_iterator)
                if cache_samples:
                    self._cached_samples.append(item)
            item = self._processor_fn[data_type](**item, **components, generator=generator)
            self._buffer.add(data_type, item)

        if drop_samples:
            del self._cached_samples
            self._cached_samples = []

        self._preprocessed_iterator = InMemoryDataIterable(self._rank, data_type, self._buffer)
        return iter(self._preprocessed_iterator)

    def consume_once(
        self,
        data_type: str,
        components: Dict[str, Any],
        data_iterator,
        generator: Optional[torch.Generator] = None,
        cache_samples: bool = False,
        use_cached_samples: bool = False,
        drop_samples: bool = False,
    ) -> Iterable[Dict[str, Any]]:
        if data_type not in self._processor_fn.keys():
            raise ValueError(f"Invalid data type: {data_type}. Supported types: {list(self._processor_fn.keys())}")
        if cache_samples:
            if use_cached_samples:
                raise ValueError("Cannot cache and use cached samples at the same time.")
            if drop_samples:
                raise ValueError("Cannot cache and drop samples at the same time.")

        for i in range(self._num_items):
            if use_cached_samples:
                item = self._cached_samples[i]
            else:
                item = next(data_iterator)
                if cache_samples:
                    self._cached_samples.append(item)
            item = self._processor_fn[data_type](**item, **components, generator=generator)
            self._buffer.add(data_type, item)

        if drop_samples:
            del self._cached_samples
            self._cached_samples = []

        self._preprocessed_iterator = InMemoryOnceDataIterable(self._rank, data_type, self._buffer)
        return iter(self._preprocessed_iterator)

    @property
    def requires_data(self):
        if self._preprocessed_iterator is None:
            return True
        return self._preprocessed_iterator.requires_data


class PrecomputedDistributedDataPreprocessor(DistributedDataProcessorMixin):
    def __init__(
        self,
        rank: int,
        world_size: int,
        num_items: int,
        processor_fn: Dict[str, Callable[[Dict[str, Any]], Dict[str, Any]]],
        save_dir: str,
        enable_reuse: bool = False,
    ) -> None:
        super().__init__()

        self._rank = rank
        self._world_size = world_size
        self._num_items = num_items
        self._processor_fn = processor_fn
        self._save_dir = pathlib.Path(save_dir) / PRECOMPUTED_DATA_DIR
        self._enable_reuse = enable_reuse

        self._cached_samples = []
        self._preprocessed_iterator: Union["PrecomputedDataIterable", "PrecomputedOnceDataIterable"] = None

        if enable_reuse:
            if not self._save_dir.exists() or not self._save_dir.is_dir():
                raise RuntimeError(
                    f"The directory '{self._save_dir}' does not exist or is not a directory, but is required when enabling reuse of precomputed data."
                )
            logger.info(f"Reusing precomputed data from {self._save_dir}.")
        else:
            subdirectories = [] if not self._save_dir.exists() else [f for f in self._save_dir.iterdir() if f.is_dir()]
            if len(subdirectories) > 0:
                raise RuntimeError(
                    "The current directory contains subdirectories other than the saved precomputed files. Please remove them or enable precomputation reuse."
                )
            # NOTE: this should be safe since we are adding `PRECOMPUTED_DATA_DIR` to the path, but be careful since
            # delete_files can seriously mess up your filesystem if used incorrectly.
            delete_files([self._save_dir])
            self._save_dir.mkdir(parents=True, exist_ok=True)
            logger.info(f"Cleaned up any existing precomputed data in {self._save_dir} and created a fresh directory.")

    def consume(
        self,
        data_type: str,
        components: Dict[str, Any],
        data_iterator,
        generator: Optional[torch.Generator] = None,
        cache_samples: bool = False,
        use_cached_samples: bool = False,
        drop_samples: bool = False,
    ) -> Iterable[Dict[str, Any]]:
        if data_type not in self._processor_fn.keys():
            raise ValueError(f"Invalid data type: {data_type}. Supported types: {list(self._processor_fn.keys())}")
        if cache_samples:
            if use_cached_samples:
                raise ValueError("Cannot cache and use cached samples at the same time.")
            if drop_samples:
                raise ValueError("Cannot cache and drop samples at the same time.")

        if not self._enable_reuse:
            for i in tqdm(range(self._num_items), desc=f"Rank {self._rank}", total=self._num_items):
                if use_cached_samples:
                    item = self._cached_samples[i]
                else:
                    item = next(data_iterator)
                    if cache_samples:
                        self._cached_samples.append(item)
                item = self._processor_fn[data_type](**item, **components, generator=generator)
                index = self._rank * self._num_items + i
                _save_item(item, index, self._save_dir, data_type)

            if drop_samples:
                del self._cached_samples
                self._cached_samples = []

        if self._enable_reuse:
            data_iterator = PrecomputedOnceDataIterable(self._rank, self._world_size, self._save_dir, data_type)
        else:
            data_iterator = PrecomputedDataIterable(self._rank, self._world_size, self._save_dir, data_type)
        self._preprocessed_iterator = data_iterator
        return iter(data_iterator)

    def consume_once(
        self,
        data_type: str,
        components: Dict[str, Any],
        data_iterator,
        generator: Optional[torch.Generator] = None,
        cache_samples: bool = False,
        use_cached_samples: bool = False,
        drop_samples: bool = False,
    ) -> Iterable[Dict[str, Any]]:
        if data_type not in self._processor_fn.keys():
            raise ValueError(f"Invalid data type: {data_type}. Supported types: {list(self._processor_fn.keys())}")
        if cache_samples:
            if use_cached_samples:
                raise ValueError("Cannot cache and use cached samples at the same time.")
            if drop_samples:
                raise ValueError("Cannot cache and drop samples at the same time.")

        if not self._enable_reuse:
            for i in tqdm(range(self._num_items), desc=f"Processing data on rank {self._rank}", total=self._num_items):
                if use_cached_samples:
                    item = self._cached_samples[i]
                else:
                    item = next(data_iterator)
                    if cache_samples:
                        self._cached_samples.append(item)
                item = self._processor_fn[data_type](**item, **components, generator=generator)
                index = self._rank * self._num_items + i
                _save_item(item, index, self._save_dir, data_type)

            if drop_samples:
                del self._cached_samples
                self._cached_samples = []

        self._preprocessed_iterator = PrecomputedOnceDataIterable(
            self._rank, self._world_size, self._save_dir, data_type
        )
        return iter(self._preprocessed_iterator)

    @property
    def requires_data(self):
        if self._preprocessed_iterator is None:
            return True
        return self._preprocessed_iterator.requires_data


class InMemoryDataIterable:
    """
    An iterator that loads data items from an in-memory buffer. Once all the data is consumed,
    `requires_data` is set to True, indicating that the more data is required and the preprocessor's
    consume method should be called again.
    """

    def __init__(self, rank: int, data_type: str, buffer: "InMemoryDataBuffer") -> None:
        self._rank = rank
        self._data_type = data_type
        self._buffer = buffer

        self._requires_data = False

    def __iter__(self) -> Iterable[Dict[str, Any]]:
        while (length := self._buffer.get_length(self._data_type)) > 0:
            if length <= 1:
                self._requires_data = True
            yield self._buffer.get(self._data_type)

    def __len__(self) -> int:
        return self._buffer.get_length(self._data_type)

    @property
    def requires_data(self):
        return self._requires_data


class InMemoryOnceDataIterable:
    """
    An iterator that loads data items from an in-memory buffer. This iterator will never set
    `requires_data` to True, as it is assumed that all the data was configured to be preprocessed
    by the user. The data will indefinitely be cycled from the buffer.
    """

    def __init__(self, rank: int, data_type: str, buffer: "InMemoryDataBuffer") -> None:
        self._rank = rank
        self._data_type = data_type
        self._buffer = buffer

        self._requires_data = False

    def __iter__(self) -> Iterable[Dict[str, Any]]:
        assert len(self) > 0, "No data available in the buffer."
        while True:
            item = self._buffer.get(self._data_type)
            yield item
            self._buffer.add(self._data_type, item)

    def __len__(self) -> int:
        return self._buffer.get_length(self._data_type)

    @property
    def requires_data(self):
        return self._requires_data


class PrecomputedDataIterable:
    """
    An iterator that loads preconfigured number of data items from disk. Once all the data is
    loaded, `requires_data` is set to True, indicating that the more data is required and
    the preprocessor's consume method should be called again.
    """

    def __init__(self, rank: int, world_size: int, save_dir: str, data_type: str) -> None:
        self._rank = rank
        self._world_size = world_size
        self._save_dir = pathlib.Path(save_dir)
        self._data_type = data_type
        self._requires_data = False

        self._num_items = len(list(self._save_dir.glob(f"{data_type}-*.pt")))

    def __iter__(self) -> Iterable[Dict[str, Any]]:
        map_location = torch.device(self._rank)
        for i in range(self._num_items):
            if i == self._num_items - 1:
                self._requires_data = True
            index = self._rank * self._num_items + i
            yield _load_item(index, self._save_dir, self._data_type, map_location)

    def __len__(self) -> int:
        return self._num_items

    @property
    def requires_data(self):
        return self._requires_data


class PrecomputedOnceDataIterable:
    """
    An infinite iterator that loads preprocessed data from disk. Once initialized, this iterator
    will never set `requires_data` to True, as it is assumed that all the data was configured to
    be preprocessed by the user.
    """

    def __init__(self, rank: int, world_size: int, save_dir: str, data_type: str) -> None:
        self._rank = rank
        self._world_size = world_size
        self._save_dir = pathlib.Path(save_dir)
        self._data_type = data_type
        self._requires_data = False

        self._num_items = len(list(self._save_dir.glob(f"{data_type}-*.pt")))
        if self._num_items <= self._rank:
            raise ValueError(
                f"Precomputed data directory is empty or does not contain enough items (required {self._rank + 1}, found {self._num_items})."
            )
        self._num_items_per_rank = max(1, self._num_items // world_size)

    def __iter__(self) -> Iterable[Dict[str, Any]]:
        map_location = torch.device(self._rank)
        i = 0
        while True:
            index = self._rank * self._num_items_per_rank + i
            yield _load_item(index, self._save_dir, self._data_type, map_location)
            i = (i + 1) % self._num_items_per_rank

    def __len__(self) -> int:
        return self._num_items_per_rank

    @property
    def requires_data(self):
        return self._requires_data


class InMemoryDataBuffer:
    def __init__(self, max_limit: int = -1) -> None:
        self.max_limit = max_limit
        self.buffer: Dict[str, List[str]] = {}

    def add(self, data_type: str, item: Dict[str, Any]) -> None:
        if data_type not in self.buffer:
            self.buffer[data_type] = []
        if self.max_limit != -1 and len(self.buffer[data_type]) >= self.max_limit:
            logger.log_freq(
                "WARN",
                "IN_MEMORY_DATA_BUFFER_FULL",
                "Buffer is full. Dropping the oldest item. This message will be logged every 64th time this happens.",
                64,
            )
            self.buffer[data_type].pop(0)
        self.buffer[data_type].append(item)

    def get(self, data_type: str) -> Dict[str, Any]:
        return self.buffer[data_type].pop(0)

    def get_length(self, data_type: str) -> int:
        return len(self.buffer[data_type])


def _save_item(item: Dict[str, Any], index: int, directory: pathlib.Path, data_type: str) -> None:
    filename = directory / f"{data_type}-{index}.pt"
    torch.save(item, filename.as_posix())


def _load_item(index: int, directory: pathlib.Path, data_type: str, map_location=None) -> Dict[str, Any]:
    filename = directory / f"{data_type}-{index}.pt"
    return torch.load(filename.as_posix(), map_location=map_location, weights_only=True)