Spaces:
Running
Running
File size: 64,917 Bytes
9fd1204 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 |
import contextlib
import functools
import inspect
from enum import Enum
from typing import Any, Callable, Dict, List, Literal, Optional, Tuple, Union
import torch
# Since we will be patching the `scaled_dot_product_attention` function with `attention_dispatch` to take
# control for dispatching to different attention providers, we need to import the original function
# to be able to use it and not go into infinite recursion when the dispatcher calls `scaled_dot_product_attention`.
import torch.autograd
from diffusers.utils.import_utils import OptionalDependencyNotAvailable
from torch.nn.functional import scaled_dot_product_attention as native_sdpa
from finetrainers.constants import FINETRAINERS_ATTN_CHECKS, FINETRAINERS_ATTN_PROVIDER
from finetrainers.logging import get_logger
from finetrainers.utils.import_utils import (
is_flash_attn_available,
is_flash_attn_version,
is_sageattention_available,
is_sageattention_version,
is_torch_version,
is_xformers_available,
is_xformers_version,
)
if is_flash_attn_available():
if is_flash_attn_version("<", "2.6.3"):
raise OptionalDependencyNotAvailable(
"The `flash-attn` library version is too old. Please update it to at least 2.6.3."
)
from flash_attn import flash_attn_func, flash_attn_varlen_func
from flash_attn.flash_attn_interface import _flash_attn_backward, _flash_attn_forward
else:
flash_attn_func = None
flash_attn_varlen_func = None
_flash_attn_forward = None
_flash_attn_backward = None
if is_sageattention_available():
if is_sageattention_version("<", "2.1.1"):
raise OptionalDependencyNotAvailable(
"The `sageattention` library version is too old. Please update it to at least 2.1.1."
)
from sageattention import (
sageattn,
sageattn_qk_int8_pv_fp8_cuda,
sageattn_qk_int8_pv_fp8_cuda_sm90,
sageattn_qk_int8_pv_fp16_cuda,
sageattn_qk_int8_pv_fp16_triton,
sageattn_varlen,
)
else:
sageattn = None
sageattn_qk_int8_pv_fp16_cuda = None
sageattn_qk_int8_pv_fp16_triton = None
sageattn_qk_int8_pv_fp8_cuda = None
sageattn_qk_int8_pv_fp8_cuda_sm90 = None
sageattn_varlen = None
if is_torch_version(">=", "2.5.0"):
import torch.nn.attention.flex_attention as flex_attention
if is_torch_version(">=", "2.6.0"):
from torch.distributed.tensor.experimental._attention import (
_AttentionOp,
_cp_options,
_templated_ring_attention,
_templated_ring_attention_backward,
set_rotate_method,
)
else:
_cp_options = None
_templated_ring_attention = None
set_rotate_method = None
class _AttentionOp:
def __init__(self, *args, **kwargs):
raise OptionalDependencyNotAvailable(
"The `torch.distributed.tensor.experimental._attention` module is not available. Please update PyTorch to at least 2.6.0."
)
if is_xformers_available():
if is_xformers_version("<", "0.0.29"):
raise OptionalDependencyNotAvailable(
"The `xformers` library version is too old. Please update it to at least 0.0.29."
)
import xformers.ops as xops
else:
xops = None
logger = get_logger()
_SAGE_ATTENTION_PV_ACCUM_DTYPE = Literal["fp32", "fp32+fp32"]
_SAGE_ATTENTION_QK_QUANT_GRAN = Literal["per_thread", "per_warp"]
_SAGE_ATTENTION_QUANTIZATION_BACKEND = Literal["cuda", "triton"]
# ===== Custom operator implementations/wrappers =====
def _finetrainers_scaled_dot_product_efficient_attention_forward(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_bias: Optional[torch.Tensor] = None,
compute_log_sumexp: bool = False,
dropout_p: float = 0.0,
is_causal: bool = False,
scale: Optional[float] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
# Wrapper for https://github.com/pytorch/pytorch/blob/8904ba638726f8c9a5aff5977c4aa76c9d2edfa6/aten/src/ATen/native/native_functions.yaml#L14946
# See: https://github.com/pytorch/pytorch/issues/152942
seqlen_q = query.shape[-2]
out, lse, philox_seed, philox_offset = torch.ops.aten._scaled_dot_product_efficient_attention(
query=query,
key=key,
value=value,
attn_bias=attn_bias,
compute_log_sumexp=compute_log_sumexp,
dropout_p=dropout_p,
is_causal=is_causal,
scale=scale,
)
# LSE is aligned to the next nearest multiple of 32. This is a workaround to return the lse without alignment so that pytorch
# ring attention does not error out with shape mismatch
if compute_log_sumexp:
assert lse.ndim == 3
lse = lse[:, :, :seqlen_q] # .contiguous()
return out, lse, philox_seed, philox_offset
# aten::_scaled_dot_product_efficient_attention_backward(Tensor grad_out_, Tensor query, Tensor key, Tensor value, Tensor attn_bias, Tensor out, Tensor logsumexp, Tensor philox_seed, Tensor philox_offset, float dropout_p, bool[4] grad_input_mask, bool is_causal=False, *, float? scale=None) -> (Tensor, Tensor, Tensor, Tensor)
def _finetrainers_scaled_dot_product_efficient_attention_backward(
grad_out_: torch.Tensor,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_bias: torch.Tensor,
out: torch.Tensor,
logsumexp: torch.Tensor,
philox_seed: torch.Tensor,
philox_offset: torch.Tensor,
dropout_p: float,
grad_input_mask: List[bool],
is_causal: bool = False,
scale: Optional[float] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
assert len(grad_input_mask) == 4
# https://github.com/pytorch/pytorch/blob/bb9fbb294af385057a72e5b1386cf40f86aadbec/aten/src/ATen/native/transformers/cuda/mem_eff_attention/kernel_forward.h#L113
kAlignLSE = 32
logsumexp = torch.nn.functional.pad(
logsumexp, (0, kAlignLSE - (logsumexp.shape[-1] % kAlignLSE)), value=float("inf")
)
grad_query, grad_key, grad_value, grad_attn_bias = torch.ops.aten._scaled_dot_product_efficient_attention_backward(
grad_out_=grad_out_,
query=query,
key=key,
value=value,
attn_bias=attn_bias,
out=out,
logsumexp=logsumexp,
philox_seed=philox_seed,
philox_offset=philox_offset,
dropout_p=dropout_p,
grad_input_mask=grad_input_mask,
is_causal=is_causal,
scale=scale,
)
return grad_query, grad_key, grad_value, grad_attn_bias
# This function wraps the actual _flash_attn_forward call to return LSE at index 1 to be compatible with pytorch's native ring attention
def _finetrainers_flash_attn_forward(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
dropout_p: float = 0.0,
scale: Optional[float] = None,
is_causal: bool = False,
window_size: Tuple[int, int] = (-1, -1),
softcap: float = 0.0,
alibi_slopes: Optional[torch.Tensor] = None,
return_softmax: bool = False,
):
query, key, value = (
x.permute(0, 2, 1, 3).contiguous() for x in (query, key, value)
) # [B, N, S, D] -> [B, S, N, D]
out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward(
query, key, value, dropout_p, scale, is_causal, window_size, softcap, alibi_slopes, return_softmax
)
out = out.permute(0, 2, 1, 3).contiguous() # [B, S, N, D] -> [B, N, S, D]
return out, softmax_lse, q, k, v, out_padded, S_dmask, rng_state
# This function wraps the actual _flash_attn_backward call as the counterpart of the _finetrainers_flash_attn_forward function
def _finetrainers_flash_attn_backward(
grad_out: torch.Tensor,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
out: torch.Tensor,
logsumexp: torch.Tensor, # Needs a different names than the one used in flash-attn because _templated_ring_attention_backward assumes name is logsumexp
dropout_p: float,
scale: Optional[float] = None,
is_causal: bool = False,
window_size: Tuple[int, int] = (-1, -1),
softcap: float = 0.0,
alibi_slopes: Optional[torch.Tensor] = None,
deterministic: bool = False,
rng_state: Optional[torch.Tensor] = None,
_permute_outputs: bool = True,
):
dq, dk, dv = torch.empty_like(query), torch.empty_like(key), torch.empty_like(value)
grad_out = grad_out.permute(0, 2, 1, 3).contiguous() # [B, N, S, D] -> [B, S, N, D]
dq, dk, dv, softmax_d = _flash_attn_backward(
grad_out,
query,
key,
value,
out,
logsumexp,
dq,
dk,
dv,
dropout_p,
scale,
is_causal,
window_size,
softcap,
alibi_slopes,
deterministic,
rng_state,
)
# Head dimension may have been padded
dq = dq[..., : grad_out.shape[-1]]
dk = dk[..., : grad_out.shape[-1]]
dv = dv[..., : grad_out.shape[-1]]
if _permute_outputs:
dq, dk, dv = (x.permute(0, 2, 1, 3).contiguous() for x in (dq, dk, dv)) # [B, S, N, D] -> [B, N, S, D]
return dq, dk, dv
# ===== Attention provider =====
class AttentionProvider(str, Enum):
# EAGER = "eager"
# `flash-attn`
FLASH = "flash"
FLASH_VARLEN = "flash_varlen"
# PyTorch native
FLEX = "flex"
NATIVE = "native"
_NATIVE_CUDNN = "_native_cudnn"
_NATIVE_EFFICIENT = "_native_efficient"
_NATIVE_FLASH = "_native_flash"
_NATIVE_MATH = "_native_math"
# `sageattention`
SAGE = "sage"
SAGE_VARLEN = "sage_varlen"
_SAGE_QK_INT8_PV_FP8_CUDA = "_sage_qk_int8_pv_fp8_cuda"
_SAGE_QK_INT8_PV_FP8_CUDA_SM90 = "_sage_qk_int8_pv_fp8_cuda_sm90"
_SAGE_QK_INT8_PV_FP16_CUDA = "_sage_qk_int8_pv_fp16_cuda"
_SAGE_QK_INT8_PV_FP16_TRITON = "_sage_qk_int8_pv_fp16_triton"
# TODO: let's not add support for Sparge Attention now because it requires tuning per model
# We can look into supporting something "autotune"-ing in the future
# SPARGE = "sparge"
# `xformers`
XFORMERS = "xformers"
class _AttentionProviderRegistry:
_providers = {}
_constraints = {}
_supports_cp = {}
_supported_arg_names = {}
_active_provider = AttentionProvider(FINETRAINERS_ATTN_PROVIDER)
_checks_enabled = FINETRAINERS_ATTN_CHECKS
# Context parallel attributes
_mesh: torch.distributed.device_mesh.DeviceMesh = None
_convert_to_fp32: bool = None
_rotate_method: Literal["allgather", "alltoall"] = None
@classmethod
def register(
cls, provider: AttentionProvider, constraints: Optional[List[Callable]] = None, supports_cp: bool = False
):
logger.debug(f"Registering attention provider: {provider}")
def decorator(func):
cls._providers[provider] = func
cls._constraints[provider] = constraints or []
cls._supports_cp[provider] = supports_cp
cls._supported_arg_names[provider] = set(inspect.signature(func).parameters.keys())
return func
return decorator
@classmethod
def get_active_provider(cls):
return cls._active_provider, cls._providers[cls._active_provider]
@classmethod
def list_providers(cls):
return list(cls._providers.keys())
@classmethod
def supports_context_parallel(cls, provider: AttentionProvider):
if provider not in cls._providers:
raise ValueError(f"Provider {provider} is not registered.")
return cls._supports_cp.get(provider, False)
@classmethod
def context_parallel_enabled(cls):
return cls._mesh is not None
@classmethod
def _set_context_parallel(
cls,
mesh: torch.distributed.device_mesh.DeviceMesh = None,
convert_to_fp32: bool = None,
rotate_method: str = None,
*,
reset: bool = False,
):
if reset:
mesh = convert_to_fp32 = rotate_method = None
cls._mesh = mesh
cls._convert_to_fp32 = convert_to_fp32
cls._rotate_method = rotate_method
@classmethod
def _raise_cp_error_if_mesh_not_set(cls):
if cls._mesh is None:
raise ValueError(
"`_AttentionProviderRegistry._mesh` is None. It must be set before calling context parallel attention methods."
)
@contextlib.contextmanager
def attention_provider(
provider: AttentionProvider = AttentionProvider.NATIVE,
*,
mesh: Optional[torch.distributed.device_mesh.DeviceMesh] = None,
convert_to_fp32: bool = True,
rotate_method: str = "allgather",
):
"""Context manager to set the active attention provider and possibly enable context parallelism."""
if provider not in _AttentionProviderRegistry._providers:
raise ValueError(f"Provider {provider} is not registered.")
if mesh is not None and not _AttentionProviderRegistry.supports_context_parallel(provider):
raise ValueError(f"Provider {provider} does not support context parallelism.")
old_provider = _AttentionProviderRegistry._active_provider
_AttentionProviderRegistry._active_provider = provider
_AttentionProviderRegistry._mesh = mesh
_AttentionProviderRegistry._convert_to_fp32 = convert_to_fp32
_AttentionProviderRegistry._rotate_method = rotate_method
if mesh is not None:
_convert_to_f32 = _cp_options.convert_to_f32
_enable_load_balance = _cp_options.enable_load_balance
_rotate_method = _cp_options.rotate_method
try:
yield
finally:
_AttentionProviderRegistry._active_provider = old_provider
_AttentionProviderRegistry._mesh = None
_AttentionProviderRegistry._convert_to_fp32 = None
_AttentionProviderRegistry._rotate_method = None
if mesh is not None:
_cp_options.convert_to_f32 = _convert_to_f32
_cp_options.enable_load_balance = _enable_load_balance
_cp_options.rotate_method = _rotate_method
def attention_dispatch(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
dropout_p: float = 0.0,
is_causal: bool = False,
scale: Optional[float] = None,
enable_gqa: bool = False,
attention_kwargs: Optional[Dict[str, Any]] = None,
) -> torch.Tensor:
attention_kwargs = attention_kwargs or {}
provider_name, provider_fn = _AttentionProviderRegistry.get_active_provider()
kwargs = {
"query": query,
"key": key,
"value": value,
"attn_mask": attn_mask,
"dropout_p": dropout_p,
"is_causal": is_causal,
"scale": scale,
"enable_gqa": enable_gqa,
**attention_kwargs,
}
if _AttentionProviderRegistry._checks_enabled:
removed_kwargs = set(kwargs) - set(_AttentionProviderRegistry._supported_arg_names[provider_name])
if removed_kwargs:
log_freq = 512
msg = (
f"Removing unsupported arguments for attention provider {provider_name}: {removed_kwargs}. This "
f"message will be logged every {log_freq} calls."
)
logger.log_freq("WARNING", "REMOVING_ATTN_UNSUPPORTED_KWARGS", msg, log_freq)
for check in _AttentionProviderRegistry._constraints.get(provider_name):
check(**kwargs)
kwargs = {k: v for k, v in kwargs.items() if k in _AttentionProviderRegistry._supported_arg_names[provider_name]}
if _AttentionProviderRegistry.context_parallel_enabled():
_set_context_parallel_options(**kwargs)
return provider_fn(**kwargs)
# ===== Helper functions =====
# @torch.compiler.assume_constant_result
def _set_context_parallel_options(is_causal: bool, **kwargs):
_cp_options.enable_load_balance = is_causal
_cp_options.convert_to_f32 = _AttentionProviderRegistry._convert_to_fp32
set_rotate_method(_AttentionProviderRegistry._rotate_method)
def _check_attn_mask_is_none(attn_mask: Optional[torch.Tensor], **kwargs) -> None:
if attn_mask is not None:
raise ValueError("Attention mask must be None for this provider.")
def _check_attn_mask_or_causal(attn_mask: Optional[torch.Tensor], is_causal: bool, **kwargs) -> None:
if attn_mask is not None and is_causal:
raise ValueError("`is_causal` cannot be True when `attn_mask` is not None.")
def _check_device(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, **kwargs) -> None:
if query.device != key.device or query.device != value.device:
raise ValueError("Query, key, and value must be on the same device.")
if query.dtype != key.dtype or query.dtype != value.dtype:
raise ValueError("Query, key, and value must have the same dtype.")
def _check_device_cuda(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, **kwargs) -> None:
_check_device(query, key, value)
if query.device.type != "cuda":
raise ValueError("Query, key, and value must be on a CUDA device.")
def _check_device_cuda_atleast_smXY(major: int, minor: int) -> Callable:
def check_device_cuda(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, **kwargs) -> None:
_check_device_cuda(query, key, value)
if torch.cuda.get_device_capability(query.device) < (major, minor):
raise ValueError(
f"Query, key, and value must be on a CUDA device with compute capability >= {major}.{minor}."
)
return check_device_cuda
def _check_qkv_dtype_match(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, **kwargs) -> None:
if query.dtype != key.dtype:
raise ValueError("Query and key must have the same dtype.")
if query.dtype != value.dtype:
raise ValueError("Query and value must have the same dtype.")
def _check_qkv_dtype_bf16_or_fp16(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, **kwargs) -> None:
_check_qkv_dtype_match(query, key, value)
if query.dtype not in (torch.bfloat16, torch.float16):
raise ValueError("Query, key, and value must be either bfloat16 or float16.")
def _check_shape(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
**kwargs,
) -> None:
if query.shape[-1] != key.shape[-1]:
raise ValueError("Query and key must have the same last dimension.")
if query.shape[-2] != value.shape[-2]:
raise ValueError("Query and value must have the same second to last dimension.")
if attn_mask is not None and attn_mask.shape[-1] != key.shape[-2]:
raise ValueError("Attention mask must match the key's second to last dimension.")
def _prepare_for_flash_attn_or_sage_varlen(
batch_size: int,
seq_len_q: int,
seq_len_kv: int,
attn_mask: Optional[torch.Tensor] = None,
device: Optional[torch.device] = None,
) -> None:
seqlens_q = torch.full((batch_size,), seq_len_q, dtype=torch.int32, device=device)
if attn_mask is None:
seqlens_k = torch.full((batch_size,), seq_len_kv, dtype=torch.int32, device=device)
else:
seqlens_k = attn_mask.sum(dim=1, dtype=torch.int32)
cu_seqlens_q = torch.zeros(batch_size + 1, dtype=torch.int32, device=device)
cu_seqlens_k = torch.zeros(batch_size + 1, dtype=torch.int32, device=device)
cu_seqlens_q[1:] = torch.cumsum(seqlens_q, dim=0)
cu_seqlens_k[1:] = torch.cumsum(seqlens_k, dim=0)
max_seqlen_q = seqlens_q.max().item()
max_seqlen_k = seqlens_k.max().item()
return (seqlens_q, seqlens_k), (cu_seqlens_q, cu_seqlens_k), (max_seqlen_q, max_seqlen_k)
def _normalize_attn_mask(attn_mask: torch.Tensor, batch_size: int, seq_len_k: int) -> torch.Tensor:
"""
Normalize an attention mask to shape [batch_size, seq_len_k] (bool) suitable for inferring seqlens_k in
FlashAttention/Sage varlen.
Supports 1D to 4D shapes and common broadcasting patterns.
"""
if attn_mask.dtype != torch.bool:
raise ValueError(f"Attention mask must be of type bool, got {attn_mask.dtype}.")
if attn_mask.ndim == 1:
# [seq_len_k] -> broadcast across batch
attn_mask = attn_mask.unsqueeze(0).expand(batch_size, seq_len_k)
elif attn_mask.ndim == 2:
# [batch_size, seq_len_k]. Maybe broadcast across batch
if attn_mask.size(0) not in [1, batch_size]:
raise ValueError(
f"attn_mask.shape[0] ({attn_mask.shape[0]}) must be 1 or {batch_size} for 2D attention mask."
)
attn_mask = attn_mask.expand(batch_size, seq_len_k)
elif attn_mask.ndim == 3:
# [batch_size, seq_len_q, seq_len_k] -> reduce over query dimension
if attn_mask.size(0) not in [1, batch_size]:
raise ValueError(
f"attn_mask.shape[0] ({attn_mask.shape[0]}) must be 1 or {batch_size} for 3D attention mask."
)
attn_mask = attn_mask.any(dim=1)
attn_mask = attn_mask.expand(batch_size, seq_len_k)
elif attn_mask.ndim == 4:
# [batch_size, num_heads, seq_len_q, seq_len_k] or broadcastable versions
if attn_mask.size(0) not in [1, batch_size]:
raise ValueError(
f"attn_mask.shape[0] ({attn_mask.shape[0]}) must be 1 or {batch_size} for 4D attention mask."
)
attn_mask = attn_mask.expand(batch_size, -1, -1, seq_len_k) # [B, H, Q, K]
attn_mask = attn_mask.any(dim=(1, 2)) # [B, K]
else:
raise ValueError(f"Unsupported attention mask shape: {attn_mask.shape}")
if attn_mask.shape != (batch_size, seq_len_k):
raise ValueError(
f"Normalized attention mask shape mismatch: got {attn_mask.shape}, expected ({batch_size}, {seq_len_k})"
)
return attn_mask
def _flex_attention_causal_mask_mod(batch_idx, head_idx, q_idx, kv_idx):
return q_idx >= kv_idx
# ===== Attention provider implementations =====
# Adapted from: https://github.com/Dao-AILab/flash-attention/blob/fd2fc9d85c8e54e5c20436465bca709bc1a6c5a1/flash_attn/flash_attn_interface.py#L807
class _flash_attn_flash_attention(torch.autograd.Function):
@staticmethod
def forward(
ctx: torch.autograd.function.FunctionCtx,
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
dropout_p: float = 0.0,
softmax_scale: Optional[float] = None,
causal: bool = False,
window_size: Tuple[int, int] = (-1, -1),
softcap: float = 0.0,
alibi_slopes: Optional[torch.Tensor] = None,
deterministic: bool = False,
return_softmax: bool = False,
):
if softmax_scale is None:
softmax_scale = q.shape[-1] ** (-0.5)
ctx.dropout_p = dropout_p
ctx.softmax_scale = softmax_scale
ctx.causal = causal
ctx.window_size = window_size
ctx.softcap = softcap
ctx.alibi_slopes = alibi_slopes
ctx.deterministic = deterministic
out, lse, q, k, v, out_padded, S_dmask, rng_state = _finetrainers_flash_attn_forward(
query=q,
key=k,
value=v,
dropout_p=dropout_p,
scale=softmax_scale,
is_causal=causal,
window_size=window_size,
softcap=softcap,
alibi_slopes=alibi_slopes,
return_softmax=return_softmax,
)
ctx.save_for_backward(q, k, v, out_padded, lse, rng_state)
return (out, lse) if return_softmax else out
@staticmethod
def backward(
ctx: torch.autograd.function.FunctionCtx,
grad_out: torch.Tensor,
*args: torch.Tensor,
):
q, k, v, out, lse, rng_state = ctx.saved_tensors
grad_query, grad_key, grad_value = _finetrainers_flash_attn_backward(
grad_out=grad_out,
query=q,
key=k,
value=v,
out=out,
logsumexp=lse,
dropout_p=ctx.dropout_p,
scale=ctx.softmax_scale,
is_causal=ctx.causal,
window_size=ctx.window_size,
softcap=ctx.softcap,
alibi_slopes=ctx.alibi_slopes,
deterministic=ctx.deterministic,
rng_state=rng_state,
)
return grad_query, grad_key, grad_value, None, None, None, None, None, None, None, None
# Adapted from: https://github.com/Dao-AILab/flash-attention/blob/fd2fc9d85c8e54e5c20436465bca709bc1a6c5a1/flash_attn/flash_attn_interface.py#L807
class _native_ring_flash_attn_flash_attention(torch.autograd.Function):
@staticmethod
def forward(
ctx: torch.autograd.function.FunctionCtx,
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
dropout_p: float = 0.0,
softmax_scale: Optional[float] = None,
causal: bool = False,
window_size: Tuple[int, int] = (-1, -1),
softcap: float = 0.0,
alibi_slopes: Optional[torch.Tensor] = None,
deterministic: bool = False,
return_softmax: bool = False,
):
if softmax_scale is None:
softmax_scale = q.shape[-1] ** (-0.5)
# For ring flash attention using the flash-attn repo, we want the LSE but flash-attn only supports it if dropout_p > 0
dropout_p = dropout_p if dropout_p > 0 else 1e-30
ctx.dropout_p = dropout_p
ctx.softmax_scale = softmax_scale
ctx.causal = causal
ctx.window_size = window_size
ctx.softcap = softcap
ctx.alibi_slopes = alibi_slopes
ctx.deterministic = deterministic
out, lse, q, k, v, out_padded, S_dmask, rng_state = _templated_ring_attention(
mesh=_AttentionProviderRegistry._mesh,
seq_dim=2,
op=_finetrainers_flash_attn_forward,
query=q,
key=k,
value=v,
dropout_p=dropout_p,
scale=softmax_scale,
is_causal=causal,
window_size=window_size,
softcap=softcap,
alibi_slopes=alibi_slopes,
return_softmax=True,
)
ctx.save_for_backward(q, k, v, out_padded, lse, rng_state)
return (out, lse) if return_softmax else out
@staticmethod
def backward(
ctx: torch.autograd.function.FunctionCtx,
grad_out: torch.Tensor,
*args: torch.Tensor,
):
q, k, v, out, lse, rng_state = ctx.saved_tensors
lse = lse.permute(0, 2, 1).contiguous() # [B, N, S] -> [B, S, N]
grad_query, grad_key, grad_value = _templated_ring_attention_backward(
mesh=_AttentionProviderRegistry._mesh,
# This needs to be 1 because q, k, v, out_padded returned from forward are BSND instead of BNSD
# The grad_out permutation is handled in _finetrainers_flash_attn_backward, and the outputs from that are expected to have
# shape BSND instead of BNSD (requirement of _templated_ring_attention_backward), so we need to set seq_dim=1 and permute the
# returned outputs
seq_dim=1,
op=functools.partial(_finetrainers_flash_attn_backward, _permute_outputs=False),
grad_out=grad_out,
grad_out_name="grad_out",
query=q,
key=k,
value=v,
out=out,
logsumexp=lse,
dropout_p=ctx.dropout_p,
scale=ctx.softmax_scale,
is_causal=ctx.causal,
window_size=ctx.window_size,
softcap=ctx.softcap,
alibi_slopes=ctx.alibi_slopes,
deterministic=ctx.deterministic,
rng_state=rng_state,
)
grad_query, grad_key, grad_value = (
x.permute(0, 2, 1, 3).contiguous() for x in (grad_query, grad_key, grad_value)
)
return grad_query, grad_key, grad_value, None, None, None, None, None, None, None, None
@_AttentionProviderRegistry.register(
AttentionProvider.FLASH,
constraints=[_check_attn_mask_is_none, _check_device, _check_qkv_dtype_bf16_or_fp16, _check_shape],
supports_cp=True,
)
def flash_attn_flash_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
dropout_p: float = 0.0,
scale: Optional[float] = None,
is_causal: bool = False,
window_size: Tuple[int, int] = (-1, -1),
softcap: float = 0.0,
alibi_slopes: Optional[torch.Tensor] = None,
deterministic: bool = False,
return_lse: bool = False,
) -> torch.Tensor:
dispatch_fn = (
_native_ring_flash_attn_flash_attention
if _AttentionProviderRegistry.context_parallel_enabled()
else _flash_attn_flash_attention
)
return dispatch_fn.apply(
query, key, value, dropout_p, scale, is_causal, window_size, softcap, alibi_slopes, deterministic, return_lse
)
@_AttentionProviderRegistry.register(
AttentionProvider.FLASH_VARLEN,
constraints=[_check_device, _check_qkv_dtype_bf16_or_fp16, _check_shape],
supports_cp=False,
)
def _flash_varlen_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
cu_seqlens_q: Optional[torch.Tensor] = None,
cu_seqlens_k: Optional[torch.Tensor] = None,
max_seqlen_q: Optional[int] = None,
max_seqlen_k: Optional[int] = None,
dropout_p: float = 0.0,
scale: Optional[float] = None,
is_causal: bool = False,
window_size: Tuple[int, int] = (-1, -1),
softcap: float = 0.0,
alibi_slopes: Optional[torch.Tensor] = None,
deterministic: bool = False,
return_attn_probs: bool = False,
attn_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
batch_size, _, seq_len_q, _ = query.shape
_, _, seq_len_kv, _ = key.shape
if attn_mask is not None:
attn_mask = _normalize_attn_mask(attn_mask, batch_size, seq_len_kv)
if any(x is None for x in (cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k)):
(_, seqlens_k), (cu_seqlens_q, cu_seqlens_k), (max_seqlen_q, max_seqlen_k) = (
_prepare_for_flash_attn_or_sage_varlen(
batch_size, seq_len_q, seq_len_kv, attn_mask=attn_mask, device=query.device
)
)
else:
seqlens_k = torch.full((batch_size,), max_seqlen_k, dtype=torch.int32, device=query.device)
cu_seqlens_q = cu_seqlens_q.to(dtype=torch.int32, device=query.device)
cu_seqlens_k = cu_seqlens_k.to(dtype=torch.int32, device=query.device)
query, key, value = (x.permute(0, 2, 1, 3) for x in (query, key, value))
key_valid, value_valid = [], []
for b in range(batch_size):
valid_len = seqlens_k[b]
key_valid.append(key[b, :valid_len])
value_valid.append(value[b, :valid_len])
query_packed = query.flatten(0, 1)
key_packed = torch.cat(key_valid, dim=0)
value_packed = torch.cat(value_valid, dim=0)
if _AttentionProviderRegistry.context_parallel_enabled():
return_attn_probs = True
out = flash_attn_varlen_func(
q=query_packed,
k=key_packed,
v=value_packed,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_q,
max_seqlen_k=max_seqlen_k,
dropout_p=dropout_p,
softmax_scale=scale,
causal=is_causal,
window_size=window_size,
softcap=softcap,
alibi_slopes=alibi_slopes,
deterministic=deterministic,
return_attn_probs=return_attn_probs,
)
rest = None
if return_attn_probs:
out, *rest = out
out = out.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3) # .contiguous()
if return_attn_probs:
return out, *rest[:1]
return out
@_AttentionProviderRegistry.register(
AttentionProvider.FLEX,
constraints=[_check_attn_mask_or_causal, _check_device, _check_shape],
supports_cp=False,
)
def _native_flex_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: Optional[Union[torch.Tensor, "flex_attention.BlockMask"]] = None,
dropout_p: float = 0.0,
is_causal: bool = False,
scale: Optional[float] = None,
enable_gqa: bool = False,
return_lse: bool = False,
kernel_options: Optional[Dict[str, Any]] = None,
) -> torch.Tensor:
# TODO: should we LRU cache the block mask creation?
score_mod = None
block_mask = None
batch_size, num_heads, seq_len_q, _ = query.shape
_, _, seq_len_kv, _ = key.shape
if attn_mask is None or isinstance(attn_mask, flex_attention.BlockMask):
block_mask = attn_mask
elif is_causal:
block_mask = flex_attention.create_block_mask(
_flex_attention_causal_mask_mod, None, None, seq_len_q, seq_len_kv, query.device
)
elif torch.is_tensor(attn_mask):
if attn_mask.ndim == 2:
attn_mask = attn_mask.view(attn_mask.size(0), 1, attn_mask.size(1), 1)
attn_mask = attn_mask.expand(batch_size, num_heads, seq_len_q, seq_len_kv)
if attn_mask.dtype == torch.bool:
# TODO: this probably does not work but verify!
def mask_mod(batch_idx, head_idx, q_idx, kv_idx):
return attn_mask[batch_idx, head_idx, q_idx, kv_idx]
block_mask = flex_attention.create_block_mask(
mask_mod, batch_size, None, seq_len_q, seq_len_kv, query.device
)
else:
def score_mod(score, batch_idx, head_idx, q_idx, kv_idx):
return score + attn_mask[batch_idx, head_idx, q_idx, kv_idx]
else:
raise ValueError("Attention mask must be either None, a BlockMask, or a 2D/4D tensor.")
return flex_attention.flex_attention(
query=query,
key=key,
value=value,
score_mod=score_mod,
block_mask=block_mask,
scale=scale,
enable_gqa=enable_gqa,
return_lse=return_lse,
kernel_options=None,
)
@_AttentionProviderRegistry.register(
AttentionProvider.NATIVE,
constraints=[_check_device, _check_shape],
supports_cp=False,
)
def _native_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
dropout_p: float = 0.0,
is_causal: bool = False,
scale: Optional[float] = None,
enable_gqa: bool = False,
) -> torch.Tensor:
return native_sdpa(
query=query,
key=key,
value=value,
attn_mask=attn_mask,
dropout_p=dropout_p,
is_causal=is_causal,
scale=scale,
enable_gqa=enable_gqa,
)
class _native_cudnn_attention(torch.autograd.Function):
# https://github.com/pytorch/pytorch/blob/8904ba638726f8c9a5aff5977c4aa76c9d2edfa6/aten/src/ATen/native/native_functions.yaml#L14958
# forward declaration:
# aten::_scaled_dot_product_cudnn_attention(Tensor query, Tensor key, Tensor value, Tensor? attn_bias, bool compute_log_sumexp, float dropout_p=0., bool is_causal=False, bool return_debug_mask=False, *, float? scale=None) -> (Tensor output, Tensor logsumexp, Tensor cum_seq_q, Tensor cum_seq_k, SymInt max_q, SymInt max_k, Tensor philox_seed, Tensor philox_offset, Tensor debug_attn_mask)
# backward declaration:
# aten::_scaled_dot_product_cudnn_attention_backward(Tensor grad_out, Tensor query, Tensor key, Tensor value, Tensor out, Tensor logsumexp, Tensor philox_seed, Tensor philox_offset, Tensor attn_bias, Tensor cum_seq_q, Tensor cum_seq_k, SymInt max_q, SymInt max_k, float dropout_p, bool is_causal, *, float? scale=None) -> (Tensor, Tensor, Tensor)
@staticmethod
def forward(
ctx: torch.autograd.function.FunctionCtx,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
dropout_p: float = 0.0,
is_causal: bool = False,
scale: Optional[float] = None,
return_lse: bool = False,
):
ctx.dropout_p = dropout_p
ctx.is_causal = is_causal
ctx.scale = scale
ctx.attn_mask = attn_mask
out, lse, cum_seq_q, cum_seq_k, max_q, max_k, philox_seed, philox_offset, debug_attn_mask = (
torch.ops.aten._scaled_dot_product_cudnn_attention(
query=query,
key=key,
value=value,
attn_bias=attn_mask,
compute_log_sumexp=True,
dropout_p=dropout_p,
is_causal=is_causal,
return_debug_mask=False,
scale=scale,
)
)
ctx.max_q = max_q
ctx.max_k = max_k
ctx.save_for_backward(query, key, value, out, lse, cum_seq_q, cum_seq_k, philox_seed, philox_offset)
return (out, lse) if return_lse else out
@staticmethod
def backward(
ctx: torch.autograd.function.FunctionCtx,
grad_out: torch.Tensor,
*args: torch.Tensor,
):
query, key, value, out, lse, cum_seq_q, cum_seq_k, philox_seed, philox_offset = ctx.saved_tensors
grad_query, grad_key, grad_value = torch.ops.aten._scaled_dot_product_cudnn_attention_backward(
grad_out=grad_out,
query=query,
key=key,
value=value,
out=out,
logsumexp=lse,
philox_seed=philox_seed,
philox_offset=philox_offset,
attn_bias=ctx.attn_mask,
cum_seq_q=cum_seq_q,
cum_seq_k=cum_seq_k,
max_q=ctx.max_q,
max_k=ctx.max_k,
dropout_p=ctx.dropout_p,
is_causal=ctx.is_causal,
scale=ctx.scale,
)
return grad_query, grad_key, grad_value, None, None, None, None, None
class _native_ring_native_cudnn_attention(torch.autograd.Function):
@staticmethod
def forward(
ctx: torch.autograd.function.FunctionCtx,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
dropout_p: float = 0.0,
is_causal: bool = False,
scale: Optional[float] = None,
return_lse: bool = False,
):
_AttentionProviderRegistry._raise_cp_error_if_mesh_not_set()
ctx.dropout_p = dropout_p
ctx.is_causal = is_causal
ctx.scale = scale
ctx.attn_mask = attn_mask
out, lse, cum_seq_q, cum_seq_k, max_q, max_k, philox_seed, philox_offset, debug_attn_mask = (
_templated_ring_attention(
mesh=_AttentionProviderRegistry._mesh,
seq_dim=2,
op=torch.ops.aten._scaled_dot_product_cudnn_attention,
query=query,
key=key,
value=value,
attn_bias=attn_mask,
compute_log_sumexp=True,
dropout_p=dropout_p,
is_causal=is_causal,
return_debug_mask=False,
scale=scale,
)
)
ctx.max_q = max_q
ctx.max_k = max_k
ctx.save_for_backward(query, key, value, out, lse, cum_seq_q, cum_seq_k, philox_seed, philox_offset)
return (out, lse) if return_lse else out
@staticmethod
def backward(
ctx: torch.autograd.function.FunctionCtx,
grad_out: torch.Tensor,
*args: torch.Tensor,
):
_AttentionProviderRegistry._raise_cp_error_if_mesh_not_set()
query, key, value, out, lse, cum_seq_q, cum_seq_k, philox_seed, philox_offset = ctx.saved_tensors
grad_query, grad_key, grad_value = _templated_ring_attention_backward(
mesh=_AttentionProviderRegistry._mesh,
seq_dim=2,
op=torch.ops.aten._scaled_dot_product_cudnn_attention_backward,
grad_out=grad_out,
grad_out_name="grad_out",
query=query,
key=key,
value=value,
out=out,
logsumexp=lse,
philox_seed=philox_seed,
philox_offset=philox_offset,
attn_bias=ctx.attn_mask,
cum_seq_q=cum_seq_q,
cum_seq_k=cum_seq_k,
max_q=ctx.max_q,
max_k=ctx.max_k,
dropout_p=ctx.dropout_p,
is_causal=ctx.is_causal,
scale=ctx.scale,
)
return grad_query, grad_key, grad_value, None, None, None, None, None
@_AttentionProviderRegistry.register(
AttentionProvider._NATIVE_CUDNN,
constraints=[_check_device, _check_qkv_dtype_bf16_or_fp16, _check_shape],
supports_cp=True,
)
def native_cudnn_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
dropout_p: float = 0.0,
is_causal: bool = False,
scale: Optional[float] = None,
return_lse: bool = False,
) -> torch.Tensor:
dispatch_fn = (
_native_ring_native_cudnn_attention
if _AttentionProviderRegistry.context_parallel_enabled()
else _native_cudnn_attention
)
return dispatch_fn.apply(query, key, value, attn_mask, dropout_p, is_causal, scale, return_lse)
class _native_efficient_attention(torch.autograd.Function):
# https://github.com/pytorch/pytorch/blob/8904ba638726f8c9a5aff5977c4aa76c9d2edfa6/aten/src/ATen/native/native_functions.yaml#L14946
# forward declaration:
# aten::_scaled_dot_product_efficient_attention(Tensor query, Tensor key, Tensor value, Tensor? attn_bias, bool compute_log_sumexp, float dropout_p=0., bool is_causal=False, *, float? scale=None) -> (Tensor output, Tensor log_sumexp, Tensor philox_seed, Tensor philox_offset)
# backward declaration:
# aten::_scaled_dot_product_efficient_attention_backward(Tensor grad_out_, Tensor query, Tensor key, Tensor value, Tensor attn_bias, Tensor out, Tensor logsumexp, Tensor philox_seed, Tensor philox_offset, float dropout_p, bool[4] grad_input_mask, bool is_causal=False, *, float? scale=None) -> (Tensor, Tensor, Tensor, Tensor)
@staticmethod
def forward(
ctx: torch.autograd.function.FunctionCtx,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
dropout_p: float = 0.0,
is_causal: bool = False,
scale: Optional[float] = None,
return_lse: bool = False,
):
ctx.dropout_p = dropout_p
ctx.is_causal = is_causal
ctx.scale = scale
ctx.attn_mask = attn_mask
# NOTE: Uses finetrainers registered op because of LSE alignment issue. See the op registration for more details.
out, lse, philox_seed, philox_offset = _finetrainers_scaled_dot_product_efficient_attention_forward(
query=query,
key=key,
value=value,
attn_bias=attn_mask,
compute_log_sumexp=True,
dropout_p=dropout_p,
is_causal=is_causal,
scale=scale,
)
ctx.save_for_backward(query, key, value, out, lse, philox_seed, philox_offset)
return (out, lse) if return_lse else out
@staticmethod
def backward(
ctx: torch.autograd.function.FunctionCtx,
grad_out: torch.Tensor,
*args: torch.Tensor,
):
query, key, value, out, lse, philox_seed, philox_offset = ctx.saved_tensors
# NOTE: Uses finetrainers registered op because of LSE alignment issue. See the op registration for more details.
grad_query, grad_key, grad_value, grad_attn_bias = (
_finetrainers_scaled_dot_product_efficient_attention_backward(
grad_out_=grad_out,
query=query,
key=key,
value=value,
attn_bias=ctx.attn_mask,
out=out,
logsumexp=lse,
philox_seed=philox_seed,
philox_offset=philox_offset,
dropout_p=ctx.dropout_p,
grad_input_mask=[True, True, True, False],
is_causal=ctx.is_causal,
scale=ctx.scale,
)
)
return grad_query, grad_key, grad_value, None, None, None, None, None
class _native_ring_native_efficient_attention(torch.autograd.Function):
@staticmethod
def forward(
ctx: torch.autograd.function.FunctionCtx,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
dropout_p: float = 0.0,
is_causal: bool = False,
scale: Optional[float] = None,
return_lse: bool = False,
):
_AttentionProviderRegistry._raise_cp_error_if_mesh_not_set()
ctx.dropout_p = dropout_p
ctx.is_causal = is_causal
ctx.scale = scale
ctx.attn_mask = attn_mask
# NOTE: Uses finetrainers registered op because of LSE alignment issue. See the op registration for more details.
out, lse, philox_seed, philox_offset = _templated_ring_attention(
mesh=_AttentionProviderRegistry._mesh,
seq_dim=2,
op=_finetrainers_scaled_dot_product_efficient_attention_forward,
query=query,
key=key,
value=value,
attn_bias=attn_mask,
compute_log_sumexp=True,
dropout_p=dropout_p,
is_causal=is_causal,
scale=scale,
)
ctx.save_for_backward(query, key, value, out, lse, philox_seed, philox_offset)
return (out, lse) if return_lse else out
@staticmethod
def backward(
ctx: torch.autograd.function.FunctionCtx,
grad_out: torch.Tensor,
*args: torch.Tensor,
):
_AttentionProviderRegistry._raise_cp_error_if_mesh_not_set()
query, key, value, out, lse, philox_seed, philox_offset = ctx.saved_tensors
# NOTE: Uses finetrainers registered op because of LSE alignment issue. See the op registration for more details.
grad_query, grad_key, grad_value, grad_attn_bias = _templated_ring_attention_backward(
mesh=_AttentionProviderRegistry._mesh,
seq_dim=2,
op=_finetrainers_scaled_dot_product_efficient_attention_backward,
grad_out=grad_out,
grad_out_name="grad_out_",
query=query,
key=key,
value=value,
attn_bias=ctx.attn_mask,
out=out,
logsumexp=lse,
philox_seed=philox_seed,
philox_offset=philox_offset,
dropout_p=ctx.dropout_p,
grad_input_mask=[True, True, True, False],
is_causal=ctx.is_causal,
scale=ctx.scale,
)
return grad_query, grad_key, grad_value, None, None, None, None, None
@_AttentionProviderRegistry.register(
AttentionProvider._NATIVE_EFFICIENT,
constraints=[_check_device, _check_shape],
supports_cp=True,
)
def native_efficient_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
dropout_p: float = 0.0,
is_causal: bool = False,
scale: Optional[float] = None,
) -> torch.Tensor:
dispatch_fn = (
_native_ring_native_efficient_attention
if _AttentionProviderRegistry.context_parallel_enabled()
else _native_efficient_attention
)
return dispatch_fn.apply(query, key, value, attn_mask, dropout_p, is_causal, scale)
class _native_flash_attention(torch.autograd.Function):
# https://github.com/pytorch/pytorch/blob/8904ba638726f8c9a5aff5977c4aa76c9d2edfa6/aten/src/ATen/native/native_functions.yaml#L14910
# forward declaration:
# aten::_scaled_dot_product_flash_attention(Tensor query, Tensor key, Tensor value, float dropout_p=0., bool is_causal=False, bool return_debug_mask=False, *, float? scale=None) -> (Tensor output, Tensor logsumexp, Tensor cum_seq_q, Tensor cum_seq_k, SymInt max_q, SymInt max_k, Tensor philox_seed, Tensor philox_offset, Tensor debug_attn_mask)
# backward declaration:
# aten::_scaled_dot_product_flash_attention_backward(Tensor grad_out, Tensor query, Tensor key, Tensor value, Tensor out, Tensor logsumexp, Tensor cum_seq_q, Tensor cum_seq_k, SymInt max_q, SymInt max_k, float dropout_p, bool is_causal, Tensor philox_seed, Tensor philox_offset, *, float? scale=None) -> (Tensor grad_query, Tensor grad_key, Tensor grad_value)
@staticmethod
def forward(
ctx: torch.autograd.function.FunctionCtx,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
dropout_p: float = 0.0,
is_causal: bool = False,
scale: Optional[float] = None,
return_lse: bool = False,
):
ctx.dropout_p = dropout_p
ctx.is_causal = is_causal
ctx.scale = scale
out, lse, cum_seq_q, cum_seq_k, max_q, max_k, philox_seed, philox_offset, debug_attn_mask = (
torch.ops.aten._scaled_dot_product_flash_attention(
query=query,
key=key,
value=value,
dropout_p=dropout_p,
is_causal=is_causal,
return_debug_mask=False,
scale=scale,
)
)
ctx.max_q = max_q
ctx.max_k = max_k
ctx.save_for_backward(query, key, value, out, lse, cum_seq_q, cum_seq_k, philox_seed, philox_offset)
return (out, lse) if return_lse else out
@staticmethod
def backward(
ctx: torch.autograd.function.FunctionCtx,
grad_out: torch.Tensor,
*args: torch.Tensor,
):
query, key, value, out, lse, cum_seq_q, cum_seq_k, philox_seed, philox_offset = ctx.saved_tensors
grad_query, grad_key, grad_value = torch.ops.aten._scaled_dot_product_flash_attention_backward(
grad_out=grad_out,
query=query,
key=key,
value=value,
out=out,
logsumexp=lse,
cum_seq_q=cum_seq_q,
cum_seq_k=cum_seq_k,
max_q=ctx.max_q,
max_k=ctx.max_k,
dropout_p=ctx.dropout_p,
is_causal=ctx.is_causal,
philox_seed=philox_seed,
philox_offset=philox_offset,
scale=ctx.scale,
)
return grad_query, grad_key, grad_value, None, None, None, None
class _native_ring_native_flash_attention(torch.autograd.Function):
@staticmethod
def forward(
ctx: torch.autograd.function.FunctionCtx,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
dropout_p: float = 0.0,
is_causal: bool = False,
scale: Optional[float] = None,
return_lse: bool = False,
):
_AttentionProviderRegistry._raise_cp_error_if_mesh_not_set()
ctx.dropout_p = dropout_p
ctx.is_causal = is_causal
ctx.scale = scale
out, lse, cum_seq_q, cum_seq_k, max_q, max_k, philox_seed, philox_offset, debug_attn_mask = (
_templated_ring_attention(
mesh=_AttentionProviderRegistry._mesh,
seq_dim=2,
op=torch.ops.aten._scaled_dot_product_flash_attention,
query=query,
key=key,
value=value,
dropout_p=dropout_p,
is_causal=is_causal,
scale=scale,
)
)
ctx.max_q = max_q
ctx.max_k = max_k
ctx.save_for_backward(query, key, value, out, lse, cum_seq_q, cum_seq_k, philox_seed, philox_offset)
return (out, lse) if return_lse else out
@staticmethod
def backward(
ctx: torch.autograd.function.FunctionCtx,
grad_out: torch.Tensor,
*args: torch.Tensor,
):
_AttentionProviderRegistry._raise_cp_error_if_mesh_not_set()
query, key, value, out, lse, cum_seq_q, cum_seq_k, philox_seed, philox_offset = ctx.saved_tensors
grad_query, grad_key, grad_value, *_ = _templated_ring_attention_backward(
mesh=_AttentionProviderRegistry._mesh,
seq_dim=2,
op=torch.ops.aten._scaled_dot_product_flash_attention_backward,
grad_out=grad_out,
grad_out_name="grad_out",
query=query,
key=key,
value=value,
out=out,
logsumexp=lse,
dropout_p=ctx.dropout_p,
is_causal=ctx.is_causal,
scale=ctx.scale,
cum_seq_q=cum_seq_q,
cum_seq_k=cum_seq_k,
max_q=ctx.max_q,
max_k=ctx.max_k,
philox_seed=philox_seed,
philox_offset=philox_offset,
)
return grad_query, grad_key, grad_value, None, None, None, None
@_AttentionProviderRegistry.register(
AttentionProvider._NATIVE_FLASH,
constraints=[_check_device, _check_qkv_dtype_bf16_or_fp16, _check_shape],
supports_cp=True,
)
def native_flash_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
dropout_p: float = 0.0,
is_causal: bool = False,
scale: Optional[float] = None,
return_lse: bool = False,
) -> torch.Tensor:
dispatch_fn = (
_native_ring_native_flash_attention
if _AttentionProviderRegistry.context_parallel_enabled()
else _native_flash_attention
)
return dispatch_fn.apply(query, key, value, dropout_p, is_causal, scale, return_lse)
# class _native_math_attention(torch.autograd.Function):
# # https://github.com/pytorch/pytorch/blob/8904ba638726f8c9a5aff5977c4aa76c9d2edfa6/aten/src/ATen/native/native_functions.yaml#L14901
# # forward declaration:
# # aten::_scaled_dot_product_attention_math(Tensor query, Tensor key, Tensor value, Tensor? attn_mask=None, float dropout_p=0., bool is_causal=False, Tensor? dropout_mask=None, *, float? scale=None, bool enable_gqa=False) -> (Tensor, Tensor)
# # backward declaration:
# # does not exist
# @staticmethod
# def forward(
# ctx: torch.autograd.function.FunctionCtx,
# query: torch.Tensor,
# key: torch.Tensor,
# value: torch.Tensor,
# attn_mask: Optional[torch.Tensor] = None,
# dropout_p: float = 0.0,
# is_causal: bool = False,
# dropout_mask: Optional[torch.Tensor] = None,
# scale: Optional[float] = None,
# enable_gqa: bool = False,
# return_scores: bool = False,
# ):
# ctx.dropout_p = dropout_p
# ctx.is_causal = is_causal
# ctx.scale = scale
# ctx.enable_gqa = enable_gqa
# print(f"query.shape: {query.shape}")
# with torch.enable_grad():
# out, scores = torch.ops.aten._scaled_dot_product_attention_math(
# query=query,
# key=key,
# value=value,
# attn_mask=attn_mask,
# dropout_p=dropout_p,
# is_causal=is_causal,
# dropout_mask=dropout_mask,
# scale=scale,
# enable_gqa=enable_gqa,
# )
# ctx.save_for_backward(query, key, value, out)
# return (out, scores) if return_scores else out
# @staticmethod
# def backward(
# ctx: torch.autograd.function.FunctionCtx,
# grad_out: torch.Tensor,
# ):
# raise NotImplementedError("Backward pass for native math attention is not implemented.")
@_AttentionProviderRegistry.register(
AttentionProvider._NATIVE_MATH,
constraints=[_check_device, _check_shape],
supports_cp=False,
)
def native_math_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
dropout_p: float = 0.0,
is_causal: bool = False,
scale: Optional[float] = None,
enable_gqa: bool = False,
) -> torch.Tensor:
with torch.nn.attention.sdpa_kernel(torch.nn.attention.SDPBackend.MATH):
return native_sdpa(
query=query,
key=key,
value=value,
attn_mask=attn_mask,
dropout_p=dropout_p,
is_causal=is_causal,
scale=scale,
enable_gqa=enable_gqa,
)
@_AttentionProviderRegistry.register(
AttentionProvider.SAGE,
constraints=[_check_device_cuda, _check_qkv_dtype_bf16_or_fp16, _check_shape],
supports_cp=False,
)
def _sage_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
is_causal: bool = False,
scale: Optional[float] = None,
return_lse: bool = False,
) -> torch.Tensor:
if _AttentionProviderRegistry.context_parallel_enabled():
return_lse = True
kwargs = {
"q": query,
"k": key,
"v": value,
"tensor_layout": "HND",
"is_causal": is_causal,
"sm_scale": scale,
"return_lse": return_lse,
}
out = sageattn(**kwargs)
rest = None
if return_lse:
out, *rest = out
if return_lse:
return out, *rest[:1]
return out
@_AttentionProviderRegistry.register(
AttentionProvider.SAGE_VARLEN,
constraints=[_check_device_cuda, _check_qkv_dtype_bf16_or_fp16, _check_shape],
)
def _sage_varlen_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
cu_seqlens_q: Optional[torch.Tensor] = None,
cu_seqlens_k: Optional[torch.Tensor] = None,
max_seqlen_q: Optional[int] = None,
max_seqlen_k: Optional[int] = None,
is_causal: bool = False,
scale: Optional[float] = None,
smooth_k: bool = True,
attn_mask: Optional[torch.Tensor] = None,
enable_gqa: bool = False,
) -> torch.Tensor:
batch_size, _, seq_len_q, _ = query.shape
_, _, seq_len_kv, _ = key.shape
if attn_mask is not None:
attn_mask = _normalize_attn_mask(attn_mask, batch_size, seq_len_kv)
if enable_gqa:
# TODO
pass
if any(x is None for x in (cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k)):
(_, seqlens_k), (cu_seqlens_q, cu_seqlens_k), (max_seqlen_q, max_seqlen_k) = (
_prepare_for_flash_attn_or_sage_varlen(
batch_size, seq_len_q, seq_len_kv, attn_mask=attn_mask, device=query.device
)
)
else:
seqlens_k = torch.full((batch_size,), max_seqlen_k, dtype=torch.int32, device=query.device)
cu_seqlens_q = cu_seqlens_q.to(dtype=torch.int32, device=query.device)
cu_seqlens_k = cu_seqlens_k.to(dtype=torch.int32, device=query.device)
query, key, value = (x.permute(0, 2, 1, 3) for x in (query, key, value))
key_valid, value_valid = [], []
for b in range(batch_size):
valid_len = seqlens_k[b]
key_valid.append(key[b, :valid_len])
value_valid.append(value[b, :valid_len])
query_packed = query.flatten(0, 1)
key_packed = torch.cat(key_valid, dim=0)
value_packed = torch.cat(value_valid, dim=0)
out = sageattn_varlen(
q=query_packed,
k=key_packed,
v=value_packed,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_q,
max_seqlen_k=max_seqlen_k,
is_causal=is_causal,
sm_scale=scale,
smooth_k=smooth_k,
)
out = out.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3) # .contiguous()
return out
@_AttentionProviderRegistry.register(
AttentionProvider._SAGE_QK_INT8_PV_FP8_CUDA,
constraints=[_check_device_cuda_atleast_smXY(9, 0), _check_shape],
supports_cp=False,
)
def _sage_qk_int8_pv_fp8_cuda_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
is_causal: bool = False,
scale: Optional[float] = None,
qk_quant_gran: _SAGE_ATTENTION_QK_QUANT_GRAN = "per_thread",
pv_accum_dtype: _SAGE_ATTENTION_PV_ACCUM_DTYPE = "fp32+fp32",
smooth_k: bool = True,
smooth_v: bool = False,
return_lse: bool = False,
) -> torch.Tensor:
return sageattn_qk_int8_pv_fp8_cuda(
q=query,
k=key,
v=value,
tensor_layout="HND",
is_causal=is_causal,
qk_quant_gran=qk_quant_gran,
sm_scale=scale,
pv_accum_dtype=pv_accum_dtype,
smooth_k=smooth_k,
smooth_v=smooth_v,
return_lse=return_lse,
)
@_AttentionProviderRegistry.register(
AttentionProvider._SAGE_QK_INT8_PV_FP8_CUDA_SM90,
constraints=[_check_device_cuda_atleast_smXY(9, 0), _check_shape],
supports_cp=False,
)
def _sage_qk_int8_pv_fp8_cuda_sm90_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
is_causal: bool = False,
scale: Optional[float] = None,
qk_quant_gran: _SAGE_ATTENTION_QK_QUANT_GRAN = "per_thread",
pv_accum_dtype: _SAGE_ATTENTION_PV_ACCUM_DTYPE = "fp32+fp32",
smooth_k: bool = True,
return_lse: bool = False,
) -> torch.Tensor:
return sageattn_qk_int8_pv_fp8_cuda_sm90(
q=query,
k=key,
v=value,
tensor_layout="HND",
is_causal=is_causal,
qk_quant_gran=qk_quant_gran,
sm_scale=scale,
pv_accum_dtype=pv_accum_dtype,
smooth_k=smooth_k,
return_lse=return_lse,
)
@_AttentionProviderRegistry.register(
AttentionProvider._SAGE_QK_INT8_PV_FP16_CUDA,
constraints=[_check_device_cuda_atleast_smXY(8, 0), _check_shape],
supports_cp=False,
)
def _sage_qk_int8_pv_fp16_cuda_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
is_causal: bool = False,
scale: Optional[float] = None,
qk_quant_gran: _SAGE_ATTENTION_QK_QUANT_GRAN = "per_thread",
pv_accum_dtype: _SAGE_ATTENTION_PV_ACCUM_DTYPE = "fp32+fp32",
smooth_k: bool = True,
smooth_v: bool = False,
return_lse: bool = False,
) -> torch.Tensor:
return sageattn_qk_int8_pv_fp16_cuda(
q=query,
k=key,
v=value,
tensor_layout="HND",
is_causal=is_causal,
qk_quant_gran=qk_quant_gran,
sm_scale=scale,
pv_accum_dtype=pv_accum_dtype,
smooth_k=smooth_k,
smooth_v=smooth_v,
return_lse=return_lse,
)
@_AttentionProviderRegistry.register(
AttentionProvider._SAGE_QK_INT8_PV_FP16_TRITON,
constraints=[_check_device_cuda_atleast_smXY(8, 0), _check_shape],
supports_cp=False,
)
def _sage_qk_int8_pv_fp16_triton_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
is_causal: bool = False,
scale: Optional[float] = None,
quantization_backend: _SAGE_ATTENTION_QUANTIZATION_BACKEND = "triton",
smooth_k: bool = True,
return_lse: bool = False,
) -> torch.Tensor:
return sageattn_qk_int8_pv_fp16_triton(
q=query,
k=key,
v=value,
tensor_layout="HND",
quantization_backend=quantization_backend,
is_causal=is_causal,
sm_scale=scale,
smooth_k=smooth_k,
return_lse=return_lse,
)
@_AttentionProviderRegistry.register(
AttentionProvider.XFORMERS,
constraints=[_check_attn_mask_or_causal, _check_device, _check_shape],
)
def _xformers_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
dropout_p: float = 0.0,
is_causal: bool = False,
scale: Optional[float] = None,
enable_gqa: bool = False,
) -> torch.Tensor:
batch_size, num_heads_q, seq_len_q, _ = query.shape
_, num_heads_kv, seq_len_kv, _ = key.shape
# TODO: check if `contiguous` is really needed since it may cause unnecessary slowdowns
if is_causal:
attn_mask = xops.LowerTriangularMask()
elif attn_mask is not None:
if attn_mask.ndim == 2:
attn_mask = attn_mask.view(attn_mask.size(0), 1, attn_mask.size(1), 1)
elif attn_mask.ndim != 4:
raise ValueError("Only 2D and 4D attention masks are supported for xformers attention.")
attn_mask = attn_mask.expand(batch_size, num_heads_q, seq_len_q, seq_len_kv).type_as(query)
# QKV need to be in [batch, seq_len, num_heads, head_dim] format for xformers
# query, key, value = (x.permute(0, 2, 1, 3).contiguous() for x in (query, key, value))
query, key, value = (x.permute(0, 2, 1, 3) for x in (query, key, value))
if enable_gqa:
if num_heads_q % num_heads_kv != 0:
raise ValueError("Number of heads in query must be divisible by number of heads in key/value.")
num_heads_per_group = num_heads_q // num_heads_kv
query = query.unflatten(2, (num_heads_kv, -1))
key = key.unflatten(2, (num_heads_kv, -1)).expand(-1, -1, -1, num_heads_per_group, -1)
value = value.unflatten(2, (num_heads_kv, -1)).expand(-1, -1, -1, num_heads_per_group, -1)
out = xops.memory_efficient_attention(query, key, value, attn_mask, dropout_p, scale)
if enable_gqa:
out = out.flatten(2, 3)
out = out.permute(0, 2, 1, 3) # .contiguous()
return out
|