File size: 16,025 Bytes
9fd1204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
import functools
import os
from typing import Any, Dict, List, Optional, Tuple

import torch
from accelerate import init_empty_weights
from diffusers import (
    AutoencoderKLCogVideoX,
    CogVideoXDDIMScheduler,
    CogVideoXImageToVideoPipeline,
    CogVideoXPipeline,
    CogVideoXTransformer3DModel,
)
from PIL.Image import Image
from transformers import AutoModel, AutoTokenizer, T5EncoderModel, T5Tokenizer

from finetrainers.data import VideoArtifact
from finetrainers.logging import get_logger
from finetrainers.models.modeling_utils import ModelSpecification
from finetrainers.models.utils import DiagonalGaussianDistribution
from finetrainers.processors import ProcessorMixin, T5Processor
from finetrainers.typing import ArtifactType, SchedulerType
from finetrainers.utils import _enable_vae_memory_optimizations, get_non_null_items, safetensors_torch_save_function

from .utils import prepare_rotary_positional_embeddings


logger = get_logger()


class CogVideoXLatentEncodeProcessor(ProcessorMixin):
    r"""
    Processor to encode image/video into latents using the CogVideoX VAE.

    Args:
        output_names (`List[str]`):
            The names of the outputs that the processor returns. The outputs are in the following order:
            - latents: The latents of the input image/video.
    """

    def __init__(self, output_names: List[str]):
        super().__init__()
        self.output_names = output_names
        assert len(self.output_names) == 1

    def forward(
        self,
        vae: AutoencoderKLCogVideoX,
        image: Optional[torch.Tensor] = None,
        video: Optional[torch.Tensor] = None,
        generator: Optional[torch.Generator] = None,
        compute_posterior: bool = True,
    ) -> Dict[str, torch.Tensor]:
        device = vae.device
        dtype = vae.dtype

        if image is not None:
            video = image.unsqueeze(1)

        assert video.ndim == 5, f"Expected 5D tensor, got {video.ndim}D tensor"
        video = video.to(device=device, dtype=vae.dtype)
        video = video.permute(0, 2, 1, 3, 4).contiguous()  # [B, F, C, H, W] -> [B, C, F, H, W]

        if compute_posterior:
            latents = vae.encode(video).latent_dist.sample(generator=generator)
            latents = latents.to(dtype=dtype)
        else:
            if vae.use_slicing and video.shape[0] > 1:
                encoded_slices = [vae._encode(x_slice) for x_slice in video.split(1)]
                moments = torch.cat(encoded_slices)
            else:
                moments = vae._encode(video)
            latents = moments.to(dtype=dtype)

        latents = latents.permute(0, 2, 1, 3, 4)  # [B, C, F, H, W] -> [B, F, C, H, W]
        return {self.output_names[0]: latents}


class CogVideoXModelSpecification(ModelSpecification):
    def __init__(
        self,
        pretrained_model_name_or_path: str = "THUDM/CogVideoX-5b",
        tokenizer_id: Optional[str] = None,
        text_encoder_id: Optional[str] = None,
        transformer_id: Optional[str] = None,
        vae_id: Optional[str] = None,
        text_encoder_dtype: torch.dtype = torch.bfloat16,
        transformer_dtype: torch.dtype = torch.bfloat16,
        vae_dtype: torch.dtype = torch.bfloat16,
        revision: Optional[str] = None,
        cache_dir: Optional[str] = None,
        condition_model_processors: List[ProcessorMixin] = None,
        latent_model_processors: List[ProcessorMixin] = None,
        **kwargs,
    ) -> None:
        super().__init__(
            pretrained_model_name_or_path=pretrained_model_name_or_path,
            tokenizer_id=tokenizer_id,
            text_encoder_id=text_encoder_id,
            transformer_id=transformer_id,
            vae_id=vae_id,
            text_encoder_dtype=text_encoder_dtype,
            transformer_dtype=transformer_dtype,
            vae_dtype=vae_dtype,
            revision=revision,
            cache_dir=cache_dir,
        )

        if condition_model_processors is None:
            condition_model_processors = [T5Processor(["encoder_hidden_states", "prompt_attention_mask"])]
        if latent_model_processors is None:
            latent_model_processors = [CogVideoXLatentEncodeProcessor(["latents"])]

        self.condition_model_processors = condition_model_processors
        self.latent_model_processors = latent_model_processors

    @property
    def _resolution_dim_keys(self):
        return {"latents": (1, 3, 4)}

    def load_condition_models(self) -> Dict[str, torch.nn.Module]:
        common_kwargs = {"revision": self.revision, "cache_dir": self.cache_dir}

        if self.tokenizer_id is not None:
            tokenizer = AutoTokenizer.from_pretrained(self.tokenizer_id, **common_kwargs)
        else:
            tokenizer = T5Tokenizer.from_pretrained(
                self.pretrained_model_name_or_path, subfolder="tokenizer", **common_kwargs
            )

        if self.text_encoder_id is not None:
            text_encoder = AutoModel.from_pretrained(
                self.text_encoder_id, torch_dtype=self.text_encoder_dtype, **common_kwargs
            )
        else:
            text_encoder = T5EncoderModel.from_pretrained(
                self.pretrained_model_name_or_path,
                subfolder="text_encoder",
                torch_dtype=self.text_encoder_dtype,
                **common_kwargs,
            )

        return {"tokenizer": tokenizer, "text_encoder": text_encoder}

    def load_latent_models(self) -> Dict[str, torch.nn.Module]:
        common_kwargs = {"revision": self.revision, "cache_dir": self.cache_dir}

        if self.vae_id is not None:
            vae = AutoencoderKLCogVideoX.from_pretrained(self.vae_id, torch_dtype=self.vae_dtype, **common_kwargs)
        else:
            vae = AutoencoderKLCogVideoX.from_pretrained(
                self.pretrained_model_name_or_path, subfolder="vae", torch_dtype=self.vae_dtype, **common_kwargs
            )

        return {"vae": vae}

    def load_diffusion_models(self) -> Dict[str, torch.nn.Module]:
        common_kwargs = {"revision": self.revision, "cache_dir": self.cache_dir}

        if self.transformer_id is not None:
            transformer = CogVideoXTransformer3DModel.from_pretrained(
                self.transformer_id, torch_dtype=self.transformer_dtype, **common_kwargs
            )
        else:
            transformer = CogVideoXTransformer3DModel.from_pretrained(
                self.pretrained_model_name_or_path,
                subfolder="transformer",
                torch_dtype=self.transformer_dtype,
                **common_kwargs,
            )

        scheduler = CogVideoXDDIMScheduler.from_pretrained(
            self.pretrained_model_name_or_path, subfolder="scheduler", **common_kwargs
        )

        return {"transformer": transformer, "scheduler": scheduler}

    def load_pipeline(
        self,
        tokenizer: Optional[T5Tokenizer] = None,
        text_encoder: Optional[T5EncoderModel] = None,
        transformer: Optional[CogVideoXTransformer3DModel] = None,
        vae: Optional[AutoencoderKLCogVideoX] = None,
        scheduler: Optional[CogVideoXDDIMScheduler] = None,
        enable_slicing: bool = False,
        enable_tiling: bool = False,
        enable_model_cpu_offload: bool = False,
        training: bool = False,
        **kwargs,
    ) -> CogVideoXPipeline:
        components = {
            "tokenizer": tokenizer,
            "text_encoder": text_encoder,
            "transformer": transformer,
            "vae": vae,
            "scheduler": scheduler,
        }
        components = get_non_null_items(components)

        pipe = CogVideoXPipeline.from_pretrained(
            self.pretrained_model_name_or_path, **components, revision=self.revision, cache_dir=self.cache_dir
        )
        pipe.text_encoder.to(self.text_encoder_dtype)
        pipe.vae.to(self.vae_dtype)

        _enable_vae_memory_optimizations(pipe.vae, enable_slicing, enable_tiling)
        if not training:
            pipe.transformer.to(self.transformer_dtype)
        if enable_model_cpu_offload:
            pipe.enable_model_cpu_offload()
        return pipe

    @torch.no_grad()
    def prepare_conditions(
        self,
        tokenizer: T5Tokenizer,
        text_encoder: T5EncoderModel,
        caption: str,
        max_sequence_length: int = 226,
        **kwargs,
    ) -> Dict[str, Any]:
        conditions = {
            "tokenizer": tokenizer,
            "text_encoder": text_encoder,
            "caption": caption,
            "max_sequence_length": max_sequence_length,
            **kwargs,
        }
        input_keys = set(conditions.keys())
        conditions = super().prepare_conditions(**conditions)
        conditions = {k: v for k, v in conditions.items() if k not in input_keys}
        conditions.pop("prompt_attention_mask", None)
        return conditions

    @torch.no_grad()
    def prepare_latents(
        self,
        vae: AutoencoderKLCogVideoX,
        image: Optional[torch.Tensor] = None,
        video: Optional[torch.Tensor] = None,
        generator: Optional[torch.Generator] = None,
        compute_posterior: bool = True,
        **kwargs,
    ) -> Dict[str, torch.Tensor]:
        conditions = {
            "vae": vae,
            "image": image,
            "video": video,
            "generator": generator,
            "compute_posterior": compute_posterior,
            **kwargs,
        }
        input_keys = set(conditions.keys())
        conditions = super().prepare_latents(**conditions)
        conditions = {k: v for k, v in conditions.items() if k not in input_keys}
        return conditions

    def forward(
        self,
        transformer: CogVideoXTransformer3DModel,
        scheduler: CogVideoXDDIMScheduler,
        condition_model_conditions: Dict[str, torch.Tensor],
        latent_model_conditions: Dict[str, torch.Tensor],
        sigmas: torch.Tensor,
        generator: Optional[torch.Generator] = None,
        compute_posterior: bool = True,
        **kwargs,
    ) -> Tuple[torch.Tensor, ...]:
        # Just hardcode for now. In Diffusers, we will refactor such that RoPE would be handled within the model itself.
        VAE_SPATIAL_SCALE_FACTOR = 8
        rope_base_height = self.transformer_config.sample_height * VAE_SPATIAL_SCALE_FACTOR
        rope_base_width = self.transformer_config.sample_width * VAE_SPATIAL_SCALE_FACTOR
        patch_size = self.transformer_config.patch_size
        patch_size_t = getattr(self.transformer_config, "patch_size_t", None)

        if compute_posterior:
            latents = latent_model_conditions.pop("latents")
        else:
            posterior = DiagonalGaussianDistribution(latent_model_conditions.pop("latents"), _dim=2)
            latents = posterior.sample(generator=generator)
            del posterior

        if not getattr(self.vae_config, "invert_scale_latents", False):
            latents = latents * self.vae_config.scaling_factor

        if patch_size_t is not None:
            latents = self._pad_frames(latents, patch_size_t)

        timesteps = (sigmas.flatten() * 1000.0).long()

        noise = torch.zeros_like(latents).normal_(generator=generator)
        noisy_latents = scheduler.add_noise(latents, noise, timesteps)

        batch_size, num_frames, num_channels, height, width = latents.shape
        ofs_emb = (
            None
            if getattr(self.transformer_config, "ofs_embed_dim", None) is None
            else latents.new_full((batch_size,), fill_value=2.0)
        )

        image_rotary_emb = (
            prepare_rotary_positional_embeddings(
                height=height * VAE_SPATIAL_SCALE_FACTOR,
                width=width * VAE_SPATIAL_SCALE_FACTOR,
                num_frames=num_frames,
                vae_scale_factor_spatial=VAE_SPATIAL_SCALE_FACTOR,
                patch_size=patch_size,
                patch_size_t=patch_size_t,
                attention_head_dim=self.transformer_config.attention_head_dim,
                device=transformer.device,
                base_height=rope_base_height,
                base_width=rope_base_width,
            )
            if self.transformer_config.use_rotary_positional_embeddings
            else None
        )

        latent_model_conditions["hidden_states"] = noisy_latents.to(latents)
        latent_model_conditions["image_rotary_emb"] = image_rotary_emb
        latent_model_conditions["ofs"] = ofs_emb

        velocity = transformer(
            **latent_model_conditions,
            **condition_model_conditions,
            timestep=timesteps,
            return_dict=False,
        )[0]
        # For CogVideoX, the transformer predicts the velocity. The denoised output is calculated by applying the same
        # code paths as scheduler.get_velocity(), which can be confusing to understand.
        pred = scheduler.get_velocity(velocity, noisy_latents, timesteps)
        target = latents

        return pred, target, sigmas

    def validation(
        self,
        pipeline: CogVideoXPipeline,
        prompt: str,
        image: Optional[Image] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_frames: Optional[int] = None,
        num_inference_steps: int = 50,
        generator: Optional[torch.Generator] = None,
        **kwargs,
    ) -> List[ArtifactType]:
        # TODO(aryan): add support for more parameters
        if image is not None:
            pipeline = CogVideoXImageToVideoPipeline.from_pipe(pipeline)

        generation_kwargs = {
            "prompt": prompt,
            "image": image,
            "height": height,
            "width": width,
            "num_frames": num_frames,
            "num_inference_steps": num_inference_steps,
            "generator": generator,
            "return_dict": True,
            "output_type": "pil",
        }
        generation_kwargs = get_non_null_items(generation_kwargs)
        video = pipeline(**generation_kwargs).frames[0]
        return [VideoArtifact(value=video)]

    def _save_lora_weights(
        self,
        directory: str,
        transformer_state_dict: Optional[Dict[str, torch.Tensor]] = None,
        scheduler: Optional[SchedulerType] = None,
        metadata: Optional[Dict[str, str]] = None,
        *args,
        **kwargs,
    ) -> None:
        # TODO(aryan): this needs refactoring
        if transformer_state_dict is not None:
            CogVideoXPipeline.save_lora_weights(
                directory,
                transformer_state_dict,
                save_function=functools.partial(safetensors_torch_save_function, metadata=metadata),
                safe_serialization=True,
            )
        if scheduler is not None:
            scheduler.save_pretrained(os.path.join(directory, "scheduler"))

    def _save_model(
        self,
        directory: str,
        transformer: CogVideoXTransformer3DModel,
        transformer_state_dict: Optional[Dict[str, torch.Tensor]] = None,
        scheduler: Optional[SchedulerType] = None,
    ) -> None:
        # TODO(aryan): this needs refactoring
        if transformer_state_dict is not None:
            with init_empty_weights():
                transformer_copy = CogVideoXTransformer3DModel.from_config(transformer.config)
            transformer_copy.load_state_dict(transformer_state_dict, strict=True, assign=True)
            transformer_copy.save_pretrained(os.path.join(directory, "transformer"))
        if scheduler is not None:
            scheduler.save_pretrained(os.path.join(directory, "scheduler"))

    @staticmethod
    def _pad_frames(latents: torch.Tensor, patch_size_t: int) -> torch.Tensor:
        num_frames = latents.size(1)
        additional_frames = patch_size_t - (num_frames % patch_size_t)
        if additional_frames > 0:
            last_frame = latents[:, -1:]
            padding_frames = last_frame.expand(-1, additional_frames, -1, -1, -1)
            latents = torch.cat([latents, padding_frames], dim=1)
        return latents