Spaces:
Running
Running
File size: 14,192 Bytes
9fd1204 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
import datetime
import os
import pathlib
import shutil
import time
from typing import Any, Callable, Dict, Optional
import torch
from diffusers.utils import is_accelerate_available
from finetrainers.logging import get_logger
from finetrainers.utils import get_device_info
from .base import BaseCheckpointer, BaseParallelBackend
if not is_accelerate_available():
raise ImportError(
"Please install the accelerate package using `pip install accelerate` to use the AccelerateParallelBackend."
)
from accelerate import Accelerator
from accelerate.data_loader import DataLoader
from accelerate.utils import (
DataLoaderConfiguration,
DistributedDataParallelKwargs,
InitProcessGroupKwargs,
ProjectConfiguration,
set_seed,
)
logger = get_logger()
_device_type, _device_module = get_device_info()
class AccelerateParallelBackend(BaseParallelBackend):
def __init__(
self,
world_size: int,
pp_degree: int = 1,
dp_degree: int = 1,
dp_shards: int = -1,
cp_degree: int = 1,
tp_degree: int = 1,
backend: str = "nccl",
timeout: int = 180,
logging_dir: Optional[str] = None,
output_dir: Optional[str] = None,
gradient_accumulation_steps: Optional[int] = None,
) -> None:
super().__init__()
self._world_size = world_size
self._pp_degree = pp_degree
self._dp_degree = dp_degree
self._dp_shards = dp_shards
self._cp_degree = cp_degree
self._tp_degree = tp_degree
self._output_dir = pathlib.Path(output_dir) if output_dir is not None else None
self._logging_dir = (
self._output_dir / logging_dir if output_dir is not None and logging_dir is not None else None
)
self._backend = backend
self._timeout = timeout
self._gradient_accumulation_steps = gradient_accumulation_steps
if pp_degree > 1 or dp_shards > 1 or cp_degree > 1 or tp_degree > 1:
raise ValueError(
"AccelerateParallelBackend does not support anything but Distributed Data Parallelism at the moment."
)
if dp_degree != world_size:
raise ValueError("Data parallel degree must be equal to world size.")
self._accelerator = None
if world_size == 1:
# Needs special handling for single GPU training
project_config = ProjectConfiguration(project_dir=self._output_dir, logging_dir=self._logging_dir)
dataloader_config = DataLoaderConfiguration(
split_batches=False, dispatch_batches=False, use_stateful_dataloader=True
)
init_process_group_kwargs = InitProcessGroupKwargs(
backend=self._backend, timeout=datetime.timedelta(seconds=self._timeout)
)
self._accelerator = Accelerator(
project_config=project_config,
dataloader_config=dataloader_config,
gradient_accumulation_steps=gradient_accumulation_steps,
log_with=None,
kwargs_handlers=[init_process_group_kwargs],
)
if torch.backends.mps.is_available():
self._accelerator.native_amp = False
self._mesh: torch.distributed.DeviceMesh = None
def enable_determinism(self, seed: int) -> None:
set_seed(seed)
def apply_ddp(self, model: torch.nn.Module, *args, **kwargs) -> torch.nn.Module:
project_config = None
ddp_kwargs = None
init_process_group_kwargs = None
if self._accelerator is None:
project_config = ProjectConfiguration(project_dir=self._output_dir, logging_dir=self._logging_dir)
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=False)
dataloader_config = DataLoaderConfiguration(
split_batches=False, dispatch_batches=False, use_stateful_dataloader=True
)
init_process_group_kwargs = InitProcessGroupKwargs(
backend=self._backend, timeout=datetime.timedelta(seconds=self._timeout)
)
self._accelerator, model = apply_ddp(
model,
project_config,
ddp_kwargs,
init_process_group_kwargs,
dataloader_config,
self._gradient_accumulation_steps,
accelerator=self._accelerator,
)
logger.debug("Applied AccelerateParallel::apply_ddp to model.")
return model
def prepare_model(self, model: torch.nn.Module) -> torch.nn.Module:
return self._accelerator.prepare_model(model)
def prepare_dataset(self, dataset: torch.utils.data.IterableDataset) -> torch.utils.data.IterableDataset:
logger.debug("AccelerateParallelBackend::prepare_dataset completed!")
return dataset
def prepare_dataloader(
self,
dataset: torch.utils.data.IterableDataset,
batch_size: int = 1,
num_workers: int = 0,
pin_memory: bool = False,
) -> DataLoader:
dataloader = torch.utils.data.DataLoader(
dataset, batch_size=batch_size, num_workers=num_workers, pin_memory=pin_memory
)
dataloader = self._accelerator.prepare_data_loader(dataloader)
logger.debug("AccelerateParallelBackend::prepare_dataloader completed!")
return dataloader
def prepare_optimizer(self, optimizer, lr_scheduler):
optimizer = self._accelerator.prepare_optimizer(optimizer)
lr_scheduler = self._accelerator.prepare_scheduler(lr_scheduler)
return optimizer, lr_scheduler
def get_mesh(self, name: Optional[str] = None) -> torch.distributed.DeviceMesh:
def _get_mesh():
if name is None:
return self._mesh
try:
return self._mesh[name]
except (KeyError, RuntimeError):
return self._mesh
if self._mesh is not None:
return _get_mesh()
mesh_list = [("dp_replicate", self._dp_degree), ("dp_shard", self._dp_shards)]
mesh_list = [(name, degree) for name, degree in mesh_list if degree > 1]
names = [x[0] for x in mesh_list]
degrees = [x[1] for x in mesh_list]
mesh = torch.distributed.device_mesh.init_device_mesh(_device_type, mesh_shape=degrees, mesh_dim_names=names)
dp_mesh_names, dp_cp_mesh_names, dp_shard_cp_mesh_names = [], [], []
if self.data_replication_enabled:
dp_mesh_names.append("dp_replicate")
dp_cp_mesh_names.append("dp_replicate")
if self.data_sharding_enabled:
dp_mesh_names.append("dp_shard")
dp_cp_mesh_names.append("dp_shard")
dp_shard_cp_mesh_names.append("dp_shard")
if self.context_parallel_enabled:
dp_cp_mesh_names.append("cp")
dp_shard_cp_mesh_names.append("cp")
if len(dp_mesh_names) > 0:
mesh[tuple(dp_mesh_names)]._flatten(mesh_dim_name="dp")
if len(dp_cp_mesh_names) > 0:
mesh[tuple(dp_cp_mesh_names)]._flatten(mesh_dim_name="dp_cp")
if len(dp_shard_cp_mesh_names) > 0:
mesh[tuple(dp_shard_cp_mesh_names)]._flatten(mesh_dim_name="dp_shard_cp")
logger.debug(f"Device mesh: {mesh}")
self._mesh = mesh
return _get_mesh()
def get_checkpointer(self, *args, **kwargs):
return AccelerateCheckpointer(self._accelerator, *args, **kwargs)
@property
def world_size(self):
return self._accelerator.num_processes
@property
def rank(self):
return self._accelerator.process_index
@property
def local_rank(self):
return self._accelerator.local_process_index
@property
def is_main_process(self):
r"""Returns `True` if the current process is the main process on the master node."""
return self._accelerator.is_main_process
@property
def is_local_main_process(self):
r"""Returns `True` if the current process is the main process on local node."""
return self._accelerator.is_local_main_process
@property
def device(self):
return self._accelerator.device
def wait_for_everyone(self):
self._accelerator.wait_for_everyone()
def destroy(self):
if self.is_main_process and self.tracker is not None:
self.tracker.finish()
self._accelerator.end_training()
@property
def pipeline_parallel_enabled(self):
return self._pp_degree > 1
@property
def data_parallel_enabled(self):
return self._dp_degree > 1 or self._dp_shards > 1
@property
def data_replication_enabled(self):
return self._dp_degree > 1
@property
def data_sharding_enabled(self):
return self._dp_shards > 1
@property
def context_parallel_enabled(self):
return self._cp_degree > 1
@property
def tensor_parallel_enabled(self):
return self._tp_degree > 1
class AccelerateCheckpointer(BaseCheckpointer):
def __init__(
self,
accelerator: Accelerator,
states: Dict[str, Any],
checkpointing_steps: int,
checkpointing_limit: int,
output_dir: str,
enable: bool = True,
_callback_fn: Callable[[Dict[str, Any]], Dict[str, Any]] = None,
_prefix: str = "finetrainers_step",
*args,
**kwargs,
) -> None:
self.accelerator = accelerator
self.states = states
self.checkpointing_steps = checkpointing_steps
self.checkpointing_limit = checkpointing_limit
self.output_dir = pathlib.Path(output_dir)
self.enable = enable
self._callback_fn = _callback_fn
self._prefix = _prefix
def save_model_hook(models, weights, output_dir: str) -> None:
if not self.accelerator.is_main_process:
return
# TODO(aryan): this is a temporary assertion since we only support training transformer at the moment.
# Remove it when adding support for training text encoders/vae and more.
assert len(models) == 1
_callback_fn(weights[0])
torch.save(self.states, os.path.join(output_dir, "states.pt"))
def load_model_hook(models, input_dir) -> None:
self.states = torch.load(os.path.join(input_dir, "states.pt"))
self.accelerator.register_save_state_pre_hook(save_model_hook)
self.accelerator.register_load_state_pre_hook(load_model_hook)
logger.info(f"Checkpointing enabled. Checkpoints will be stored in '{self.output_dir}'")
def save(self, step: int = -1, force: bool = False, *, _device: torch.device, _is_main_process: bool) -> str:
if not self._should_checkpoint(step, force):
return None
checkpoint_dir = self._get_checkpoint_dir(step)
begin_time = time.monotonic()
self.accelerator.save_state(checkpoint_dir.as_posix(), safe_serialization=True)
end_time = time.monotonic()
logger.info(
f"Saved checkpoint in {end_time - begin_time:.2f} seconds at step {step}. Directory: {checkpoint_dir}"
)
self._purge_stale_checkpoints()
return checkpoint_dir.as_posix()
def load(self, step: int = -1) -> bool:
if not self.enable:
return False
if not self.output_dir.exists():
return False
if step != -1 and not self._get_checkpoint_dir(step).exists():
return False
if step == -1:
latest_checkpoint_dir = self._find_latest_checkpoint_dir()
if latest_checkpoint_dir is None:
return False
step = int(latest_checkpoint_dir.name.split("_")[-1])
checkpoint_dir = self._get_checkpoint_dir(step)
logger.info(f"Loading checkpoint from '{checkpoint_dir}' at step {step}")
begin_time = time.monotonic()
self.accelerator.load_state(checkpoint_dir.as_posix())
end_time = time.monotonic()
logger.info(f"Loaded checkpoint in {end_time - begin_time:.2f} seconds.")
return True
def _should_checkpoint(self, step: int, force: bool) -> bool:
if not self.enable:
return False
if not force:
if step % self.checkpointing_steps != 0:
return False
return True
def _get_checkpoint_dir(self, step: int) -> pathlib.Path:
return self.output_dir / f"{self._prefix}_{step}"
def _find_latest_checkpoint_dir(self) -> Optional[pathlib.Path]:
checkpoints = sorted(self.output_dir.glob(f"{self._prefix}_*"), key=lambda x: int(x.name.split("_")[-1]))
return checkpoints[-1] if len(checkpoints) > 0 else None
def _purge_stale_checkpoints(self) -> None:
if self.checkpointing_limit is None or self.checkpointing_limit <= 0:
return
checkpoints = sorted(
self.output_dir.glob(f"{self._prefix}_*"), key=lambda x: int(x.name.split("_")[-1]), reverse=True
)
for checkpoint in checkpoints[self.checkpointing_limit :]:
logger.info(f"Deleting stale checkpoint: {checkpoint}")
shutil.rmtree(checkpoint, ignore_errors=True)
def apply_ddp(
model: torch.nn.Module,
project_config: Optional[ProjectConfiguration] = None,
ddp_kwargs: Optional[DistributedDataParallelKwargs] = None,
init_process_group_kwargs: Optional[InitProcessGroupKwargs] = None,
dataloader_config: Optional[DataLoaderConfiguration] = None,
gradient_accumulation_steps: Optional[int] = None,
accelerator: Optional[Accelerator] = None,
) -> torch.nn.Module:
if accelerator is None:
accelerator = Accelerator(
project_config=project_config,
dataloader_config=dataloader_config,
gradient_accumulation_steps=gradient_accumulation_steps,
log_with=None,
kwargs_handlers=[ddp_kwargs, init_process_group_kwargs],
)
if torch.backends.mps.is_available():
accelerator.native_amp = False
accelerator.prepare_model(model)
return accelerator, model
|