File size: 14,192 Bytes
9fd1204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
import datetime
import os
import pathlib
import shutil
import time
from typing import Any, Callable, Dict, Optional

import torch
from diffusers.utils import is_accelerate_available

from finetrainers.logging import get_logger
from finetrainers.utils import get_device_info

from .base import BaseCheckpointer, BaseParallelBackend


if not is_accelerate_available():
    raise ImportError(
        "Please install the accelerate package using `pip install accelerate` to use the AccelerateParallelBackend."
    )

from accelerate import Accelerator
from accelerate.data_loader import DataLoader
from accelerate.utils import (
    DataLoaderConfiguration,
    DistributedDataParallelKwargs,
    InitProcessGroupKwargs,
    ProjectConfiguration,
    set_seed,
)


logger = get_logger()
_device_type, _device_module = get_device_info()


class AccelerateParallelBackend(BaseParallelBackend):
    def __init__(
        self,
        world_size: int,
        pp_degree: int = 1,
        dp_degree: int = 1,
        dp_shards: int = -1,
        cp_degree: int = 1,
        tp_degree: int = 1,
        backend: str = "nccl",
        timeout: int = 180,
        logging_dir: Optional[str] = None,
        output_dir: Optional[str] = None,
        gradient_accumulation_steps: Optional[int] = None,
    ) -> None:
        super().__init__()

        self._world_size = world_size
        self._pp_degree = pp_degree
        self._dp_degree = dp_degree
        self._dp_shards = dp_shards
        self._cp_degree = cp_degree
        self._tp_degree = tp_degree
        self._output_dir = pathlib.Path(output_dir) if output_dir is not None else None
        self._logging_dir = (
            self._output_dir / logging_dir if output_dir is not None and logging_dir is not None else None
        )
        self._backend = backend
        self._timeout = timeout
        self._gradient_accumulation_steps = gradient_accumulation_steps

        if pp_degree > 1 or dp_shards > 1 or cp_degree > 1 or tp_degree > 1:
            raise ValueError(
                "AccelerateParallelBackend does not support anything but Distributed Data Parallelism at the moment."
            )
        if dp_degree != world_size:
            raise ValueError("Data parallel degree must be equal to world size.")

        self._accelerator = None
        if world_size == 1:
            # Needs special handling for single GPU training
            project_config = ProjectConfiguration(project_dir=self._output_dir, logging_dir=self._logging_dir)
            dataloader_config = DataLoaderConfiguration(
                split_batches=False, dispatch_batches=False, use_stateful_dataloader=True
            )
            init_process_group_kwargs = InitProcessGroupKwargs(
                backend=self._backend, timeout=datetime.timedelta(seconds=self._timeout)
            )
            self._accelerator = Accelerator(
                project_config=project_config,
                dataloader_config=dataloader_config,
                gradient_accumulation_steps=gradient_accumulation_steps,
                log_with=None,
                kwargs_handlers=[init_process_group_kwargs],
            )
            if torch.backends.mps.is_available():
                self._accelerator.native_amp = False

        self._mesh: torch.distributed.DeviceMesh = None

    def enable_determinism(self, seed: int) -> None:
        set_seed(seed)

    def apply_ddp(self, model: torch.nn.Module, *args, **kwargs) -> torch.nn.Module:
        project_config = None
        ddp_kwargs = None
        init_process_group_kwargs = None
        if self._accelerator is None:
            project_config = ProjectConfiguration(project_dir=self._output_dir, logging_dir=self._logging_dir)
            ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=False)
            dataloader_config = DataLoaderConfiguration(
                split_batches=False, dispatch_batches=False, use_stateful_dataloader=True
            )
            init_process_group_kwargs = InitProcessGroupKwargs(
                backend=self._backend, timeout=datetime.timedelta(seconds=self._timeout)
            )
        self._accelerator, model = apply_ddp(
            model,
            project_config,
            ddp_kwargs,
            init_process_group_kwargs,
            dataloader_config,
            self._gradient_accumulation_steps,
            accelerator=self._accelerator,
        )
        logger.debug("Applied AccelerateParallel::apply_ddp to model.")
        return model

    def prepare_model(self, model: torch.nn.Module) -> torch.nn.Module:
        return self._accelerator.prepare_model(model)

    def prepare_dataset(self, dataset: torch.utils.data.IterableDataset) -> torch.utils.data.IterableDataset:
        logger.debug("AccelerateParallelBackend::prepare_dataset completed!")
        return dataset

    def prepare_dataloader(
        self,
        dataset: torch.utils.data.IterableDataset,
        batch_size: int = 1,
        num_workers: int = 0,
        pin_memory: bool = False,
    ) -> DataLoader:
        dataloader = torch.utils.data.DataLoader(
            dataset, batch_size=batch_size, num_workers=num_workers, pin_memory=pin_memory
        )
        dataloader = self._accelerator.prepare_data_loader(dataloader)
        logger.debug("AccelerateParallelBackend::prepare_dataloader completed!")
        return dataloader

    def prepare_optimizer(self, optimizer, lr_scheduler):
        optimizer = self._accelerator.prepare_optimizer(optimizer)
        lr_scheduler = self._accelerator.prepare_scheduler(lr_scheduler)
        return optimizer, lr_scheduler

    def get_mesh(self, name: Optional[str] = None) -> torch.distributed.DeviceMesh:
        def _get_mesh():
            if name is None:
                return self._mesh
            try:
                return self._mesh[name]
            except (KeyError, RuntimeError):
                return self._mesh

        if self._mesh is not None:
            return _get_mesh()

        mesh_list = [("dp_replicate", self._dp_degree), ("dp_shard", self._dp_shards)]
        mesh_list = [(name, degree) for name, degree in mesh_list if degree > 1]
        names = [x[0] for x in mesh_list]
        degrees = [x[1] for x in mesh_list]
        mesh = torch.distributed.device_mesh.init_device_mesh(_device_type, mesh_shape=degrees, mesh_dim_names=names)

        dp_mesh_names, dp_cp_mesh_names, dp_shard_cp_mesh_names = [], [], []

        if self.data_replication_enabled:
            dp_mesh_names.append("dp_replicate")
            dp_cp_mesh_names.append("dp_replicate")
        if self.data_sharding_enabled:
            dp_mesh_names.append("dp_shard")
            dp_cp_mesh_names.append("dp_shard")
            dp_shard_cp_mesh_names.append("dp_shard")
        if self.context_parallel_enabled:
            dp_cp_mesh_names.append("cp")
            dp_shard_cp_mesh_names.append("cp")

        if len(dp_mesh_names) > 0:
            mesh[tuple(dp_mesh_names)]._flatten(mesh_dim_name="dp")
        if len(dp_cp_mesh_names) > 0:
            mesh[tuple(dp_cp_mesh_names)]._flatten(mesh_dim_name="dp_cp")
        if len(dp_shard_cp_mesh_names) > 0:
            mesh[tuple(dp_shard_cp_mesh_names)]._flatten(mesh_dim_name="dp_shard_cp")

        logger.debug(f"Device mesh: {mesh}")
        self._mesh = mesh
        return _get_mesh()

    def get_checkpointer(self, *args, **kwargs):
        return AccelerateCheckpointer(self._accelerator, *args, **kwargs)

    @property
    def world_size(self):
        return self._accelerator.num_processes

    @property
    def rank(self):
        return self._accelerator.process_index

    @property
    def local_rank(self):
        return self._accelerator.local_process_index

    @property
    def is_main_process(self):
        r"""Returns `True` if the current process is the main process on the master node."""
        return self._accelerator.is_main_process

    @property
    def is_local_main_process(self):
        r"""Returns `True` if the current process is the main process on local node."""
        return self._accelerator.is_local_main_process

    @property
    def device(self):
        return self._accelerator.device

    def wait_for_everyone(self):
        self._accelerator.wait_for_everyone()

    def destroy(self):
        if self.is_main_process and self.tracker is not None:
            self.tracker.finish()
        self._accelerator.end_training()

    @property
    def pipeline_parallel_enabled(self):
        return self._pp_degree > 1

    @property
    def data_parallel_enabled(self):
        return self._dp_degree > 1 or self._dp_shards > 1

    @property
    def data_replication_enabled(self):
        return self._dp_degree > 1

    @property
    def data_sharding_enabled(self):
        return self._dp_shards > 1

    @property
    def context_parallel_enabled(self):
        return self._cp_degree > 1

    @property
    def tensor_parallel_enabled(self):
        return self._tp_degree > 1


class AccelerateCheckpointer(BaseCheckpointer):
    def __init__(
        self,
        accelerator: Accelerator,
        states: Dict[str, Any],
        checkpointing_steps: int,
        checkpointing_limit: int,
        output_dir: str,
        enable: bool = True,
        _callback_fn: Callable[[Dict[str, Any]], Dict[str, Any]] = None,
        _prefix: str = "finetrainers_step",
        *args,
        **kwargs,
    ) -> None:
        self.accelerator = accelerator
        self.states = states

        self.checkpointing_steps = checkpointing_steps
        self.checkpointing_limit = checkpointing_limit
        self.output_dir = pathlib.Path(output_dir)
        self.enable = enable
        self._callback_fn = _callback_fn
        self._prefix = _prefix

        def save_model_hook(models, weights, output_dir: str) -> None:
            if not self.accelerator.is_main_process:
                return

            # TODO(aryan): this is a temporary assertion since we only support training transformer at the moment.
            # Remove it when adding support for training text encoders/vae and more.
            assert len(models) == 1

            _callback_fn(weights[0])
            torch.save(self.states, os.path.join(output_dir, "states.pt"))

        def load_model_hook(models, input_dir) -> None:
            self.states = torch.load(os.path.join(input_dir, "states.pt"))

        self.accelerator.register_save_state_pre_hook(save_model_hook)
        self.accelerator.register_load_state_pre_hook(load_model_hook)

        logger.info(f"Checkpointing enabled. Checkpoints will be stored in '{self.output_dir}'")

    def save(self, step: int = -1, force: bool = False, *, _device: torch.device, _is_main_process: bool) -> str:
        if not self._should_checkpoint(step, force):
            return None

        checkpoint_dir = self._get_checkpoint_dir(step)
        begin_time = time.monotonic()
        self.accelerator.save_state(checkpoint_dir.as_posix(), safe_serialization=True)
        end_time = time.monotonic()
        logger.info(
            f"Saved checkpoint in {end_time - begin_time:.2f} seconds at step {step}. Directory: {checkpoint_dir}"
        )
        self._purge_stale_checkpoints()

        return checkpoint_dir.as_posix()

    def load(self, step: int = -1) -> bool:
        if not self.enable:
            return False
        if not self.output_dir.exists():
            return False
        if step != -1 and not self._get_checkpoint_dir(step).exists():
            return False

        if step == -1:
            latest_checkpoint_dir = self._find_latest_checkpoint_dir()
            if latest_checkpoint_dir is None:
                return False
            step = int(latest_checkpoint_dir.name.split("_")[-1])

        checkpoint_dir = self._get_checkpoint_dir(step)
        logger.info(f"Loading checkpoint from '{checkpoint_dir}' at step {step}")

        begin_time = time.monotonic()
        self.accelerator.load_state(checkpoint_dir.as_posix())
        end_time = time.monotonic()
        logger.info(f"Loaded checkpoint in {end_time - begin_time:.2f} seconds.")

        return True

    def _should_checkpoint(self, step: int, force: bool) -> bool:
        if not self.enable:
            return False
        if not force:
            if step % self.checkpointing_steps != 0:
                return False
        return True

    def _get_checkpoint_dir(self, step: int) -> pathlib.Path:
        return self.output_dir / f"{self._prefix}_{step}"

    def _find_latest_checkpoint_dir(self) -> Optional[pathlib.Path]:
        checkpoints = sorted(self.output_dir.glob(f"{self._prefix}_*"), key=lambda x: int(x.name.split("_")[-1]))
        return checkpoints[-1] if len(checkpoints) > 0 else None

    def _purge_stale_checkpoints(self) -> None:
        if self.checkpointing_limit is None or self.checkpointing_limit <= 0:
            return
        checkpoints = sorted(
            self.output_dir.glob(f"{self._prefix}_*"), key=lambda x: int(x.name.split("_")[-1]), reverse=True
        )
        for checkpoint in checkpoints[self.checkpointing_limit :]:
            logger.info(f"Deleting stale checkpoint: {checkpoint}")
            shutil.rmtree(checkpoint, ignore_errors=True)


def apply_ddp(
    model: torch.nn.Module,
    project_config: Optional[ProjectConfiguration] = None,
    ddp_kwargs: Optional[DistributedDataParallelKwargs] = None,
    init_process_group_kwargs: Optional[InitProcessGroupKwargs] = None,
    dataloader_config: Optional[DataLoaderConfiguration] = None,
    gradient_accumulation_steps: Optional[int] = None,
    accelerator: Optional[Accelerator] = None,
) -> torch.nn.Module:
    if accelerator is None:
        accelerator = Accelerator(
            project_config=project_config,
            dataloader_config=dataloader_config,
            gradient_accumulation_steps=gradient_accumulation_steps,
            log_with=None,
            kwargs_handlers=[ddp_kwargs, init_process_group_kwargs],
        )
        if torch.backends.mps.is_available():
            accelerator.native_amp = False
    accelerator.prepare_model(model)
    return accelerator, model