Spaces:
Running
Running
File size: 28,272 Bytes
9fd1204 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 |
import datetime
import functools
import os
import pathlib
import shutil
import time
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Union
import datasets.distributed
import torch
import torch.distributed._functional_collectives
import torch.distributed.checkpoint
import torch.distributed.checkpoint.stateful
from diffusers.hooks import HookRegistry, ModelHook
from torch.distributed._composable.fsdp import CPUOffloadPolicy, MixedPrecisionPolicy, fully_shard
from torch.distributed._composable.replicate import replicate
from torch.distributed.checkpoint.state_dict import (
StateDictOptions,
get_model_state_dict,
set_model_state_dict,
)
from torch.distributed.tensor import DTensor, Shard
from finetrainers._metadata import ContextParallelModelPlan, CPInput, CPOutput, TransformerRegistry
from finetrainers.data import DPDataLoader
from finetrainers.logging import get_logger
from finetrainers.utils import enable_determinism, get_device_info, get_submodule_by_name, unwrap_module
from finetrainers.utils._common import DIFFUSERS_TRANSFORMER_BLOCK_NAMES
from .base import BaseCheckpointer, BaseParallelBackend
if TYPE_CHECKING:
from finetrainers import optimizer
_device_type, _device_module = get_device_info()
logger = get_logger()
class PytorchDTensorParallelBackend(BaseParallelBackend):
def __init__(
self,
world_size: int,
pp_degree: int = 1,
dp_degree: int = 1,
dp_shards: int = -1,
cp_degree: int = 1,
tp_degree: int = 1,
backend: str = "nccl",
timeout: int = 180,
logging_dir: Optional[str] = None,
output_dir: Optional[str] = None,
gradient_accumulation_steps: Optional[int] = None,
) -> None:
super().__init__()
self._world_size = world_size
self._pp_degree = pp_degree
self._dp_degree = dp_degree
self._dp_shards = dp_shards
self._cp_degree = cp_degree
self._tp_degree = tp_degree
self._output_dir = pathlib.Path(output_dir) if output_dir is not None else None
self._logging_dir = (
self._output_dir / logging_dir if output_dir is not None and logging_dir is not None else None
)
self._backend = backend
self._timeout = timeout
for degree in [pp_degree, dp_degree, dp_shards, cp_degree, tp_degree]:
if degree < 1:
raise ValueError(f"Parallel degree must be at least 1, got {degree}.")
if dp_shards * pp_degree * dp_degree * cp_degree * tp_degree != world_size:
raise ValueError(
f"World size {world_size} must be divisible by the product of all parallel degrees and data parallel shards."
)
torch.distributed.init_process_group(backend=self._backend, timeout=datetime.timedelta(seconds=self._timeout))
_device_module.set_device(self.local_rank)
logger.info(
f"Initialized parallel state with:\n"
f" - World size: {world_size}\n"
f" - Pipeline parallel degree: {pp_degree}\n"
f" - Data parallel degree: {dp_degree}\n"
f" - Context parallel degree: {cp_degree}\n"
f" - Tensor parallel degree: {tp_degree}\n"
f" - Data parallel shards: {dp_shards}\n"
)
self._mesh: torch.distributed.DeviceMesh = None
def enable_determinism(self, seed):
world_mesh = self.get_mesh()
enable_determinism(seed, world_mesh)
def apply_ddp(
self, model: torch.nn.Module, device_mesh: Optional[torch.distributed.DeviceMesh] = None
) -> torch.nn.Module:
if device_mesh is None:
device_mesh = self.get_mesh()
apply_ddp(model, device_mesh)
logger.debug("Applied PytorchDTensorParallel::apply_ddp to model.")
return model
def apply_fsdp2(
self,
model: torch.nn.Module,
param_dtype: torch.dtype,
reduce_dtype: torch.dtype,
output_dtype: torch.dtype,
pp_enabled: bool = False,
cpu_offload: bool = False,
device_mesh: Optional[torch.distributed.DeviceMesh] = None,
) -> torch.nn.Module:
if device_mesh is None:
device_mesh = self.get_mesh()
apply_fsdp2(model, device_mesh, param_dtype, reduce_dtype, output_dtype, pp_enabled, cpu_offload)
logger.debug("Applied PytorchDTensorParallel::apply_fsdp2 to model.")
return model
def apply_context_parallel(
self, model: torch.nn.Module, device_mesh: Optional[torch.distributed.DeviceMesh] = None
) -> torch.nn.Module:
if device_mesh is None:
device_mesh = self.get_mesh()
apply_context_parallel(model, device_mesh)
logger.debug("Applied PytorchDTensorParallel::apply_context_parallel to model.")
return model
def prepare_model(self, model: torch.nn.Module) -> torch.nn.Module:
return model
def prepare_dataset(self, dataset: torch.utils.data.IterableDataset) -> torch.utils.data.IterableDataset:
if self._dp_degree == 1:
return dataset
dp_mesh = self.get_mesh()["dp_replicate"]
dp_local_rank, dp_world_size = dp_mesh.get_local_rank(), dp_mesh.size()
dataset._data = datasets.distributed.split_dataset_by_node(dataset._data, dp_local_rank, dp_world_size)
logger.debug("PytorchDTensorParallelBackend::prepare_dataset completed!")
return dataset
def prepare_dataloader(
self, dataset: torch.utils.data.IterableDataset, batch_size: int, num_workers: int, pin_memory: bool
) -> DPDataLoader:
if self._dp_degree == 1:
dp_local_rank = 0
else:
dp_mesh = self.get_mesh()["dp_replicate"]
dp_local_rank = dp_mesh.get_local_rank()
dataloader = DPDataLoader(dp_local_rank, dataset, batch_size=batch_size, num_workers=num_workers)
logger.debug("PytorchDTensorParallelBackend::prepare_dataloader completed!")
return dataloader
def prepare_optimizer(self, optimizer, lr_scheduler):
logger.debug("PytorchDTensorParallelBackend::prepare_optimizer completed!")
return optimizer, lr_scheduler
def get_mesh(self, name: Optional[str] = None) -> torch.distributed.DeviceMesh:
def _get_mesh():
if name is None:
return self._mesh
try:
return self._mesh[name]
except (KeyError, RuntimeError):
if self._mesh.ndim == 0:
return None
return self._mesh
if self._mesh is not None:
return _get_mesh()
mesh_list = [
("pp", self._pp_degree),
("dp_replicate", self._dp_degree),
("dp_shard", self._dp_shards),
("cp", self._cp_degree),
("tp", self._tp_degree),
]
mesh_list = [(name, degree) for name, degree in mesh_list if degree > 1]
names = [x[0] for x in mesh_list]
degrees = [x[1] for x in mesh_list]
mesh = torch.distributed.device_mesh.init_device_mesh(_device_type, mesh_shape=degrees, mesh_dim_names=names)
dp_mesh_names, dp_cp_mesh_names, dp_shard_cp_mesh_names = [], [], []
if self.data_replication_enabled:
dp_mesh_names.append("dp_replicate")
dp_cp_mesh_names.append("dp_replicate")
if self.data_sharding_enabled:
dp_mesh_names.append("dp_shard")
dp_cp_mesh_names.append("dp_shard")
dp_shard_cp_mesh_names.append("dp_shard")
if self.context_parallel_enabled:
dp_cp_mesh_names.append("cp")
dp_shard_cp_mesh_names.append("cp")
if len(dp_mesh_names) > 0:
mesh[tuple(dp_mesh_names)]._flatten(mesh_dim_name="dp")
if len(dp_cp_mesh_names) > 0:
mesh[tuple(dp_cp_mesh_names)]._flatten(mesh_dim_name="dp_cp")
if len(dp_shard_cp_mesh_names) > 0:
mesh[tuple(dp_shard_cp_mesh_names)]._flatten(mesh_dim_name="dp_shard_cp")
logger.debug(f"Device mesh: {mesh}")
self._mesh = mesh
return _get_mesh()
def get_checkpointer(self, *args, **kwargs):
return PTDCheckpointer(*args, **kwargs)
@property
def world_size(self):
return torch.distributed.get_world_size()
@property
def rank(self):
return torch.distributed.get_rank()
@property
def local_rank(self):
return int(os.environ.get("LOCAL_RANK", 0))
@property
def is_main_process(self):
r"""Returns `True` if the current process is the main process on the master node."""
return self.rank == 0
@property
def is_local_main_process(self):
r"""Returns `True` if the current process is the main process on local node."""
return self.local_rank == 0
@property
def device(self):
return torch.device(_device_type, self.local_rank)
def wait_for_everyone(self):
return torch.distributed.barrier()
# @contextmanager
# def main_process_first(self):
# if self.is_main_process:
# yield
# self.wait_for_everyone()
# else:
# self.wait_for_everyone()
# yield
def destroy(self):
if self.is_main_process and self.tracker is not None:
self.tracker.finish()
return torch.distributed.destroy_process_group()
@property
def pipeline_parallel_enabled(self):
return self._pp_degree > 1
@property
def data_parallel_enabled(self):
return self._dp_degree > 1 or self._dp_shards > 1
@property
def data_replication_enabled(self):
return self._dp_degree > 1
@property
def data_sharding_enabled(self):
return self._dp_shards > 1
@property
def context_parallel_enabled(self):
return self._cp_degree > 1
@property
def tensor_parallel_enabled(self):
return self._tp_degree > 1
class ModelWrapper(torch.distributed.checkpoint.stateful.Stateful):
def __init__(self, model: Union[torch.nn.Module, List[torch.nn.Module]]) -> None:
self.model = [model] if isinstance(model, torch.nn.Module) else model
def state_dict(self) -> Dict[str, Any]:
return {k: v for sd in map(get_model_state_dict, self.model) for k, v in sd.items()}
def load_state_dict(self, state_dict: Dict[str, Any]) -> None:
func = functools.partial(
set_model_state_dict,
model_state_dict=state_dict,
options=StateDictOptions(strict=False),
)
list(map(func, self.model))
class PTDCheckpointer(BaseCheckpointer):
def __init__(
self,
dataloader: torch.utils.data.DataLoader,
model_parts: List[torch.nn.Module],
optimizers: "optimizer.OptimizerWrapper",
schedulers: "optimizer.SchedulerWrapper",
states: Dict[str, Any],
checkpointing_steps: int,
checkpointing_limit: int,
output_dir: str,
enable: bool = True,
_callback_fn: Callable[[Dict[str, Any]], Dict[str, Any]] = None,
_prefix: str = "finetrainers_step",
) -> None:
self.states = states
self.states.update(
{
"model": ModelWrapper(model_parts),
"optimizer": optimizers,
"dataloader": dataloader,
}
)
self.states.update(schedulers.get_lr_scheduler_state())
self.checkpointing_steps = checkpointing_steps
self.checkpointing_limit = checkpointing_limit
self.output_dir = pathlib.Path(output_dir)
self.enable = enable
self._callback_fn = _callback_fn
self._prefix = _prefix
logger.info(f"Checkpointing enabled. Checkpoints will be stored in '{self.output_dir}'")
def save(self, step: int = -1, force: bool = False, *, _device: torch.device, _is_main_process: bool) -> str:
if not self._should_checkpoint(step, force):
return None
checkpoint_dir = self._get_checkpoint_dir(step)
begin_time = time.monotonic()
torch.distributed.checkpoint.save(self.states, checkpoint_id=checkpoint_dir.as_posix())
end_time = time.monotonic()
logger.info(
f"Saved checkpoint in {end_time - begin_time:.2f} seconds at step {step}. Directory: {checkpoint_dir}"
)
self._purge_stale_checkpoints()
state_dicts = [
gather_state_dict_on_cpu_rank0(model, _device, is_main_process=_is_main_process)
for model in self.states["model"].model
]
if self._callback_fn is not None:
list(map(self._callback_fn, state_dicts))
return checkpoint_dir.as_posix()
def load(self, step: int = -1) -> bool:
if not self.enable:
return False
if not self.output_dir.exists():
return False
if step != -1 and not self._get_checkpoint_dir(step).exists():
return False
if step == -1:
latest_checkpoint_dir = self._find_latest_checkpoint_dir()
if latest_checkpoint_dir is None:
return False
step = int(latest_checkpoint_dir.name.split("_")[-1])
checkpoint_dir = self._get_checkpoint_dir(step)
logger.info(f"Loading checkpoint from '{checkpoint_dir}' at step {step}")
# For step 0, optimizers/schedulers are not available as they are created during training after first step
states = {"model": self.states["model"]} if step == 0 else self.states
# See bug: https://github.com/pytorch/pytorch/pull/138575
original_stateful_states = {
k: v for k, v in states.items() if isinstance(v, torch.distributed.checkpoint.stateful.Stateful)
}
begin_time = time.monotonic()
torch.distributed.checkpoint.load(states, checkpoint_id=checkpoint_dir.as_posix())
end_time = time.monotonic()
logger.info(f"Loaded checkpoint in {end_time - begin_time:.2f} seconds.")
# bugfix from above: restore the original stateful objects, whose states were already updated in-place by dcp.load()
states.update(original_stateful_states)
return True
def _should_checkpoint(self, step: int, force: bool) -> bool:
if not self.enable:
return False
if not force:
if step % self.checkpointing_steps != 0:
return False
return True
def _get_checkpoint_dir(self, step: int) -> pathlib.Path:
return self.output_dir / f"{self._prefix}_{step}"
def _find_latest_checkpoint_dir(self) -> Optional[pathlib.Path]:
checkpoints = sorted(self.output_dir.glob(f"{self._prefix}_*"), key=lambda x: int(x.name.split("_")[-1]))
return checkpoints[-1] if len(checkpoints) > 0 else None
def _purge_stale_checkpoints(self) -> None:
if self.checkpointing_limit is None or self.checkpointing_limit <= 0:
return
checkpoints = sorted(
self.output_dir.glob(f"{self._prefix}_*"), key=lambda x: int(x.name.split("_")[-1]), reverse=True
)
for checkpoint in checkpoints[self.checkpointing_limit :]:
logger.info(f"Deleting stale checkpoint: {checkpoint}")
shutil.rmtree(checkpoint, ignore_errors=True)
def gather_state_dict_on_cpu_rank0(
model, device: Optional[torch.device] = None, *, is_main_process: bool
) -> Dict[str, Any]:
cpu_state_dict = {}
sharded_sd = model.state_dict()
for param_name, param in sharded_sd.items():
if param.is_cpu:
# Move back to device if offloaded to CPU
param = param.to(device)
if hasattr(param, "_local_tensor"):
# Gather DTensor
param = param.full_tensor()
if is_main_process:
cpu_state_dict[param_name] = param.cpu()
torch.distributed.barrier()
return cpu_state_dict
# # Copied from pytorch (torch/distributed/checkpoint/format_utils.py) to support callbacks to modify state_dict
# def dcp_to_torch_save(
# dcp_checkpoint_dir: Union[str, os.PathLike],
# torch_save_path: Union[str, os.PathLike],
# callback_fn: Callable[[Dict[str, Any]], Dict[str, Any]] = None,
# ):
# """
# Given a directory containing a DCP checkpoint, this function will convert it into a
# Torch save file.
# Args:
# dcp_checkpoint_dir: Directory containing the DCP checkpoint.
# torch_save_path: Filename to store the converted Torch save file.
# callback_fn: Optional callback function that takes the state_dict as input and returns a modified state_dict.
# .. warning::
# To avoid OOM, it's recommended to only run this function on a single rank.
# """
# state_dict = {}
# _load_state_dict(
# state_dict,
# storage_reader=FileSystemReader(dcp_checkpoint_dir),
# planner=_EmptyStateDictLoadPlanner(),
# no_dist=True,
# )
# if callback_fn is not None:
# state_dict = callback_fn(state_dict)
# torch.save(state_dict, torch_save_path)
def apply_ddp(model: torch.nn.Module, dp_mesh: torch.distributed.device_mesh.DeviceMesh) -> None:
replicate(model, device_mesh=dp_mesh, bucket_cap_mb=100)
def apply_fsdp2(
model: torch.nn.Module,
dp_mesh: torch.distributed.device_mesh.DeviceMesh,
param_dtype: torch.dtype,
reduce_dtype: torch.dtype,
output_dtype: torch.dtype,
pp_enabled: bool = False,
cpu_offload: bool = False,
) -> None:
"""Apply FSDP2 on a model."""
mp_policy = MixedPrecisionPolicy(param_dtype, reduce_dtype, output_dtype, cast_forward_inputs=True)
fsdp_config = {"mesh": dp_mesh, "mp_policy": mp_policy}
if cpu_offload:
fsdp_config["offload_policy"] = CPUOffloadPolicy(pin_memory=True)
def apply_fully_shard(blocks):
for layer_index, block in enumerate(blocks):
if pp_enabled:
# For PP, do not reshard after forward to avoid per-microbatch
# all-gathers, which can be expensive and non-overlapped
reshard_after_forward = False
else:
# As an optimization, do not reshard after forward for the last
# transformer block since FSDP would prefetch it immediately
reshard_after_forward = layer_index < len(blocks) - 1
fully_shard(block, **fsdp_config, reshard_after_forward=reshard_after_forward)
for transformer_block_name in DIFFUSERS_TRANSFORMER_BLOCK_NAMES:
blocks = getattr(model, transformer_block_name, None)
if blocks is not None:
apply_fully_shard(blocks)
fully_shard(model, **fsdp_config, reshard_after_forward=not pp_enabled)
def apply_context_parallel(
model: torch.nn.Module,
mesh: torch.distributed.device_mesh.DeviceMesh,
plan: Optional[Dict[str, ContextParallelModelPlan]] = None,
) -> None:
"""Apply context parallel on a model."""
logger.debug(f"Applying context parallel with CP mesh: {mesh}")
model_cls = unwrap_module(model).__class__
if plan is None:
plan = TransformerRegistry.get(model_cls).cp_plan
for module_id, cp_model_plan in plan.items():
module = get_submodule_by_name(model, module_id)
if not isinstance(module, list):
module = [module]
logger.debug(f"Applying ContextParallelHook to {module_id=} identifying a total of {len(module)} modules")
for m in module:
registry = HookRegistry.check_if_exists_or_initialize(m)
if isinstance(cp_model_plan, list):
# Metadata can only be a list when it is a list of CPOutput
assert all(isinstance(x, CPOutput) for x in cp_model_plan)
hook = ContextParallelGatherHook(cp_model_plan, mesh)
hook_name = f"cp_output---{module_id}"
else:
hook = ContextParallelSplitHook(cp_model_plan, mesh)
hook_name = f"cp_input---{module_id}"
registry.register_hook(hook, hook_name)
class ContextParallelSplitHook(ModelHook):
def __init__(self, metadata: ContextParallelModelPlan, mesh: torch.distributed.device_mesh.DeviceMesh) -> None:
super().__init__()
self.metadata = metadata
self.mesh = mesh
def pre_forward(self, module, *args, **kwargs):
args_list = list(args)
for param_identifier, cpm in self.metadata.items():
name = param_identifier.name
index = param_identifier.index
if isinstance(cpm, CPInput) and cpm.split_output:
continue
# Maybe the parameter was passed as a keyword argument
is_kwarg = True
input_val = kwargs.get(name, None)
# If not, maybe it was passed as a positional argument
if input_val is None and index is not None:
if index < len(args_list): # Ensure index is within bounds
input_val = args_list[index]
is_kwarg = False
else:
logger.warning(f"Index {index} out of bounds for args of length {len(args_list)}.")
continue # Skip if index is invalid
# Either the input_val is truly None, or argument is passed as normal argument
# but user forgot to specify the index when registering metadata
if input_val is None:
continue
# The input_val may be a tensor or list/tuple of tensors. In certain cases, user may specify to shard
# the output instead of input for a particular layer by setting split_output=True
if torch.is_tensor(input_val):
input_val = self._prepare_cp_input(input_val, cpm)
elif isinstance(input_val, (list, tuple)):
if len(input_val) != len(cpm):
raise ValueError(
f"Expected input model plan to have {len(input_val)} elements, but got {len(cpm)}."
)
sharded_input_val = []
for i, x in enumerate(input_val):
if torch.is_tensor(x) and not cpm[i].split_output:
x = self._prepare_cp_input(x, cpm[i])
sharded_input_val.append(x)
input_val = sharded_input_val
else:
raise ValueError(f"Unsupported input type: {type(input_val)}")
if is_kwarg:
kwargs[name] = input_val
elif index is not None and index < len(args_list):
args_list[index] = input_val
return tuple(args_list), kwargs
def post_forward(self, module, output):
is_tensor = torch.is_tensor(output)
is_tensor_list = isinstance(output, (list, tuple)) and all(torch.is_tensor(x) for x in output)
if not is_tensor and not is_tensor_list:
raise ValueError(f"Expected output to be a tensor or a list/tuple of tensors, but got {type(output)}.")
output = [output] if is_tensor else list(output)
for param_identifier, cpm in self.metadata.items():
if not isinstance(cpm, CPInput) or not cpm.split_output:
continue
index = param_identifier.index
if index >= len(output):
raise ValueError(f"Index {index} out of bounds for output of length {len(output)}.")
current_output = output[index]
current_output = self._prepare_cp_input(current_output, cpm)
output[index] = current_output
return output[0] if is_tensor else tuple(output)
def _prepare_cp_input(self, x: torch.Tensor, cp_input: CPInput) -> torch.Tensor:
if cp_input.expected_dims is not None and x.dim() != cp_input.expected_dims:
raise ValueError(
f"Expected input tensor to have {cp_input.expected_dims} dimensions, but got {x.dim()} dimensions."
)
return _EquipartitionSharder.shard(x, cp_input.split_dim, self.mesh)
class ContextParallelGatherHook(ModelHook):
def __init__(self, metadata: ContextParallelModelPlan, mesh: torch.distributed.device_mesh.DeviceMesh) -> None:
super().__init__()
self.metadata = metadata
self.mesh = mesh
def post_forward(self, module, output):
is_tensor = torch.is_tensor(output)
if is_tensor:
output = [output]
output = list(output)
assert len(output) == len(self.metadata), f"Expected {len(self.metadata)} outputs, but got {len(output)}."
for i, cpm in enumerate(self.metadata):
if cpm is None:
continue
output[i] = _EquipartitionSharder.unshard(output[i], cpm.gather_dim, self.mesh)
return output[0] if is_tensor else tuple(output)
class _ContextParallelSharder:
@classmethod
def shard(cls, tensor: torch.Tensor, dim: int, mesh: torch.distributed.device_mesh.DeviceMesh) -> torch.Tensor:
raise NotImplementedError("_ContextParallelSharder::shard should be implemented in subclasses")
@classmethod
def unshard(cls, tensor: torch.Tensor, dim: int, mesh: torch.distributed.device_mesh.DeviceMesh) -> torch.Tensor:
raise NotImplementedError("_ContextParallelSharder::unshard should be implemented in subclasses")
class _EquipartitionSharder(_ContextParallelSharder):
"""
Shards the input tensor along the specified dimension into cp_mesh's world size chunks.
Essentially, rank_i gets the i-th chunk.
This sharding strategy should only be used when performing full attention. Otherwise, it will
have performance penalty. If using causal attention, please use _CausalSharder instead.
"""
@classmethod
def shard(cls, tensor: torch.Tensor, dim: int, mesh: torch.distributed.device_mesh.DeviceMesh) -> torch.Tensor:
assert tensor.size()[dim] % mesh.size() == 0
return tensor.chunk(mesh.size(), dim=dim)[mesh.get_local_rank()]
@classmethod
def unshard(cls, tensor: torch.Tensor, dim: int, mesh: torch.distributed.device_mesh.DeviceMesh) -> torch.Tensor:
tensor = tensor.contiguous()
# TODO(aryan): pass a shape here so that we can allow uneven sharding across seq dim
result = DTensor.from_local(tensor, mesh, placements=[Shard(dim)]).full_tensor()
return result
# TODO(aryan): this class is untested
class _CausalSharder(_ContextParallelSharder):
"""
Shards the input tensor along the specified dimension into 2x cp_mesh's world size chunks.
Essentially, rank_i gets the i-th chunk and (2 * cp_world_size - 1 - i)-th chunk.
This sharding strategy improves the performance for causal attention, as it allows
equal distribution of computation across all ranks.
Causal attention mask:
```
1 0 0 0 <--- Group 0
1 1 0 0 <--- Group 1
1 1 1 0 <--- Group 1
1 1 1 1 <--- Group 0
```
"""
@classmethod
def shard(cls, tensor: torch.Tensor, dim: int, mesh: torch.distributed.device_mesh.DeviceMesh) -> torch.Tensor:
world_size = mesh.size()
rank = mesh.get_local_rank()
assert tensor.size()[dim] % (2 * world_size) == 0
chunks = tensor.chunk(2 * world_size, dim=dim)
i, j = rank, 2 * world_size - 1 - rank
return torch.cat((chunks[i], chunks[j]), dim=dim)
@classmethod
def unshard(cls, tensor: torch.Tensor, dim: int, mesh: torch.distributed.device_mesh.DeviceMesh) -> torch.Tensor:
tensor = tensor.contiguous()
world_size = mesh.size()
# TODO(aryan): pass a shape here so that we can allow uneven sharding across seq dim
all_tensors = DTensor.from_local(tensor, mesh, placements=[Shard(dim)]).full_tensor()
sliced_tensors = [st for t in all_tensors for st in t.chunk(2, dim=dim)]
ordered_tensors = list(sliced_tensors)
for i, t in enumerate(sliced_tensors):
if i % 2 == 0:
ordered_tensors[i // 2] = t
else:
ordered_tensors[world_size * 2 - (i // 2) - 1] = t
return torch.cat(ordered_tensors, dim=dim)
|