File size: 7,927 Bytes
9fd1204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import argparse
from enum import Enum
from typing import TYPE_CHECKING, Any, Dict, List, Union

from finetrainers.utils import ArgsConfigMixin


if TYPE_CHECKING:
    from finetrainers.args import BaseArgs


class ControlType(str, Enum):
    r"""
    Enum class for the control types.
    """

    CANNY = "canny"
    CUSTOM = "custom"
    NONE = "none"


class FrameConditioningType(str, Enum):
    r"""
    Enum class for the frame conditioning types.
    """

    INDEX = "index"
    PREFIX = "prefix"
    RANDOM = "random"
    FIRST_AND_LAST = "first_and_last"
    FULL = "full"


class ControlLowRankConfig(ArgsConfigMixin):
    r"""
    Configuration class for SFT channel-concatenated Control low rank training.

    Args:
        control_type (`str`, defaults to `"canny"`):
            Control type for the low rank approximation matrices. Can be "canny", "custom".
        rank (int, defaults to `64`):
            Rank of the low rank approximation matrix.
        lora_alpha (int, defaults to `64`):
            The lora_alpha parameter to compute scaling factor (lora_alpha / rank) for low-rank matrices.
        target_modules (`str` or `List[str]`, defaults to `"(transformer_blocks|single_transformer_blocks).*(to_q|to_k|to_v|to_out.0|ff.net.0.proj|ff.net.2)"`):
            Target modules for the low rank approximation matrices. Can be a regex string or a list of regex strings.
        train_qk_norm (`bool`, defaults to `False`):
            Whether to train the QK normalization layers.
        frame_conditioning_type (`str`, defaults to `"full"`):
            Type of frame conditioning. Can be "index", "prefix", "random", "first_and_last", or "full".
        frame_conditioning_index (int, defaults to `0`):
            Index of the frame conditioning. Only used if `frame_conditioning_type` is "index".
        frame_conditioning_concatenate_mask (`bool`, defaults to `False`):
            Whether to concatenate the frame mask with the latents across channel dim.
    """

    control_type: str = ControlType.CANNY
    rank: int = 64
    lora_alpha: int = 64
    target_modules: Union[str, List[str]] = (
        "(transformer_blocks|single_transformer_blocks).*(to_q|to_k|to_v|to_out.0|ff.net.0.proj|ff.net.2)"
    )
    train_qk_norm: bool = False

    # Specific to video models
    frame_conditioning_type: str = FrameConditioningType.FULL
    frame_conditioning_index: int = 0
    frame_conditioning_concatenate_mask: bool = False

    def add_args(self, parser: argparse.ArgumentParser):
        parser.add_argument(
            "--control_type",
            type=str,
            default=ControlType.CANNY.value,
            choices=[x.value for x in ControlType.__members__.values()],
        )
        parser.add_argument("--rank", type=int, default=64)
        parser.add_argument("--lora_alpha", type=int, default=64)
        parser.add_argument(
            "--target_modules",
            type=str,
            nargs="+",
            default=[
                "(transformer_blocks|single_transformer_blocks).*(to_q|to_k|to_v|to_out.0|ff.net.0.proj|ff.net.2)"
            ],
        )
        parser.add_argument("--train_qk_norm", action="store_true")
        parser.add_argument(
            "--frame_conditioning_type",
            type=str,
            default=FrameConditioningType.INDEX.value,
            choices=[x.value for x in FrameConditioningType.__members__.values()],
        )
        parser.add_argument("--frame_conditioning_index", type=int, default=0)
        parser.add_argument("--frame_conditioning_concatenate_mask", action="store_true")

    def validate_args(self, args: "BaseArgs"):
        assert self.rank > 0, "Rank must be a positive integer."
        assert self.lora_alpha > 0, "lora_alpha must be a positive integer."

    def map_args(self, argparse_args: argparse.Namespace, mapped_args: "BaseArgs"):
        mapped_args.control_type = argparse_args.control_type
        mapped_args.rank = argparse_args.rank
        mapped_args.lora_alpha = argparse_args.lora_alpha
        mapped_args.target_modules = (
            argparse_args.target_modules[0] if len(argparse_args.target_modules) == 1 else argparse_args.target_modules
        )
        mapped_args.train_qk_norm = argparse_args.train_qk_norm
        mapped_args.frame_conditioning_type = argparse_args.frame_conditioning_type
        mapped_args.frame_conditioning_index = argparse_args.frame_conditioning_index
        mapped_args.frame_conditioning_concatenate_mask = argparse_args.frame_conditioning_concatenate_mask

    def to_dict(self) -> Dict[str, Any]:
        return {
            "control_type": self.control_type,
            "rank": self.rank,
            "lora_alpha": self.lora_alpha,
            "target_modules": self.target_modules,
            "train_qk_norm": self.train_qk_norm,
            "frame_conditioning_type": self.frame_conditioning_type,
            "frame_conditioning_index": self.frame_conditioning_index,
            "frame_conditioning_concatenate_mask": self.frame_conditioning_concatenate_mask,
        }


class ControlFullRankConfig(ArgsConfigMixin):
    r"""
    Configuration class for SFT channel-concatenated Control full rank training.

    Args:
        control_type (`str`, defaults to `"canny"`):
            Control type for the low rank approximation matrices. Can be "canny", "custom".
        train_qk_norm (`bool`, defaults to `False`):
            Whether to train the QK normalization layers.
        frame_conditioning_type (`str`, defaults to `"index"`):
            Type of frame conditioning. Can be "index", "prefix", "random", "first_and_last", or "full".
        frame_conditioning_index (int, defaults to `0`):
            Index of the frame conditioning. Only used if `frame_conditioning_type` is "index".
        frame_conditioning_concatenate_mask (`bool`, defaults to `False`):
            Whether to concatenate the frame mask with the latents across channel dim.
    """

    control_type: str = ControlType.CANNY
    train_qk_norm: bool = False

    # Specific to video models
    frame_conditioning_type: str = FrameConditioningType.INDEX
    frame_conditioning_index: int = 0
    frame_conditioning_concatenate_mask: bool = False

    def add_args(self, parser: argparse.ArgumentParser):
        parser.add_argument(
            "--control_type",
            type=str,
            default=ControlType.CANNY.value,
            choices=[x.value for x in ControlType.__members__.values()],
        )
        parser.add_argument("--train_qk_norm", action="store_true")
        parser.add_argument(
            "--frame_conditioning_type",
            type=str,
            default=FrameConditioningType.INDEX.value,
            choices=[x.value for x in FrameConditioningType.__members__.values()],
        )
        parser.add_argument("--frame_conditioning_index", type=int, default=0)
        parser.add_argument("--frame_conditioning_concatenate_mask", action="store_true")

    def validate_args(self, args: "BaseArgs"):
        pass

    def map_args(self, argparse_args: argparse.Namespace, mapped_args: "BaseArgs"):
        mapped_args.control_type = argparse_args.control_type
        mapped_args.train_qk_norm = argparse_args.train_qk_norm
        mapped_args.frame_conditioning_type = argparse_args.frame_conditioning_type
        mapped_args.frame_conditioning_index = argparse_args.frame_conditioning_index
        mapped_args.frame_conditioning_concatenate_mask = argparse_args.frame_conditioning_concatenate_mask

    def to_dict(self) -> Dict[str, Any]:
        return {
            "control_type": self.control_type,
            "train_qk_norm": self.train_qk_norm,
            "frame_conditioning_type": self.frame_conditioning_type,
            "frame_conditioning_index": self.frame_conditioning_index,
            "frame_conditioning_concatenate_mask": self.frame_conditioning_concatenate_mask,
        }