Spaces:
Running
Running
File size: 48,921 Bytes
9fd1204 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 |
import functools
import json
import os
import re
import time
from pathlib import Path
from typing import Any, Dict, Iterable, List, Optional, Union
import datasets.distributed
import safetensors.torch
import torch
import wandb
from diffusers import DiffusionPipeline
from diffusers.hooks import apply_layerwise_casting
from diffusers.training_utils import cast_training_params
from diffusers.utils import export_to_video
from huggingface_hub import create_repo, upload_folder
from peft import LoraConfig, get_peft_model_state_dict
from tqdm import tqdm
from finetrainers import data, logging, models, optimizer, parallel, utils
from finetrainers.args import BaseArgsType
from finetrainers.config import TrainingType
from finetrainers.patches import load_lora_weights
from finetrainers.state import TrainState
from ..base import Trainer
from .config import ControlFullRankConfig, ControlLowRankConfig
from .data import IterableControlDataset, ValidationControlDataset
ArgsType = Union[BaseArgsType, ControlFullRankConfig, ControlLowRankConfig]
logger = logging.get_logger()
class ControlTrainer(Trainer):
def __init__(self, args: ArgsType, model_specification: models.ControlModelSpecification) -> None:
super().__init__(args)
# Tokenizers
self.tokenizer = None
self.tokenizer_2 = None
self.tokenizer_3 = None
# Text encoders
self.text_encoder = None
self.text_encoder_2 = None
self.text_encoder_3 = None
# Denoisers
self.transformer = None
self.unet = None
# Autoencoders
self.vae = None
# Scheduler
self.scheduler = None
# Optimizer & LR scheduler
self.optimizer = None
self.lr_scheduler = None
# Checkpoint manager
self.checkpointer = None
self.model_specification = model_specification
self._are_condition_models_loaded = False
model_specification._trainer_init(
args.frame_conditioning_type, args.frame_conditioning_index, args.frame_conditioning_concatenate_mask
)
def run(self) -> None:
try:
self._prepare_models()
self._prepare_trainable_parameters()
self._prepare_for_training()
self._prepare_dataset()
self._prepare_checkpointing()
self._train()
# trainer._evaluate()
except Exception as e:
logger.error(f"Error during training: {e}")
self.state.parallel_backend.destroy()
raise e
def _prepare_models(self) -> None:
logger.info("Initializing models")
# TODO(aryan): allow multiple control conditions instead of just one if there's a use case for it
new_in_features = self.model_specification._original_control_layer_in_features * 2
diffusion_components = self.model_specification.load_diffusion_models(new_in_features)
self._set_components(diffusion_components)
if self.state.parallel_backend.pipeline_parallel_enabled:
raise NotImplementedError(
"Pipeline parallelism is not supported yet. This will be supported in the future."
)
def _prepare_trainable_parameters(self) -> None:
logger.info("Initializing trainable parameters")
parallel_backend = self.state.parallel_backend
model_spec = self.model_specification
if self.args.training_type == TrainingType.CONTROL_FULL_FINETUNE:
logger.info("Finetuning transformer with no additional parameters")
utils.set_requires_grad([self.transformer], True)
else:
logger.info("Finetuning transformer with PEFT parameters")
utils.set_requires_grad([self.transformer], False)
# Layerwise upcasting must be applied before adding the LoRA adapter.
# If we don't perform this before moving to device, we might OOM on the GPU. So, best to do it on
# CPU for now, before support is added in Diffusers for loading and enabling layerwise upcasting directly.
if (
self.args.training_type == TrainingType.CONTROL_LORA
and "transformer" in self.args.layerwise_upcasting_modules
):
apply_layerwise_casting(
self.transformer,
storage_dtype=self.args.layerwise_upcasting_storage_dtype,
compute_dtype=self.args.transformer_dtype,
skip_modules_pattern=self.args.layerwise_upcasting_skip_modules_pattern,
non_blocking=True,
)
transformer_lora_config = None
if self.args.training_type == TrainingType.CONTROL_LORA:
transformer_lora_config = LoraConfig(
r=self.args.rank,
lora_alpha=self.args.lora_alpha,
init_lora_weights=True,
target_modules=self._get_lora_target_modules(),
rank_pattern={
model_spec.control_injection_layer_name: model_spec._original_control_layer_out_features
},
alpha_pattern={
model_spec.control_injection_layer_name: model_spec._original_control_layer_out_features
},
)
self.transformer.add_adapter(transformer_lora_config)
if self.args.train_qk_norm:
qk_norm_identifiers = model_spec._qk_norm_identifiers
qk_norm_module_names, qk_norm_modules = [], []
for name, module in self.transformer.named_modules():
regex_match = any(re.search(identifier, name) is not None for identifier in qk_norm_identifiers)
is_parameteric = len(list(module.parameters())) > 0
if regex_match and is_parameteric:
qk_norm_module_names.append(name)
qk_norm_modules.append(module)
if len(qk_norm_modules) > 0:
logger.info(f"Training QK norms for modules: {qk_norm_module_names}")
utils.set_requires_grad(qk_norm_modules, True)
else:
logger.warning(f"No QK norm modules found with identifiers: {qk_norm_identifiers}")
# Make sure the trainable params are in float32 if data sharding is not enabled. For FSDP, we need all
# parameters to be of the same dtype.
if parallel_backend.data_sharding_enabled:
self.transformer.to(dtype=self.args.transformer_dtype)
else:
if self.args.training_type == TrainingType.CONTROL_LORA:
cast_training_params([self.transformer], dtype=torch.float32)
def _prepare_for_training(self) -> None:
# 1. Apply parallelism
parallel_backend = self.state.parallel_backend
model_specification = self.model_specification
if parallel_backend.context_parallel_enabled:
parallel_backend.apply_context_parallel(self.transformer, parallel_backend.get_mesh()["cp"])
if parallel_backend.tensor_parallel_enabled:
# TODO(aryan): handle fp8 from TorchAO here
model_specification.apply_tensor_parallel(
backend=parallel.ParallelBackendEnum.PTD,
device_mesh=parallel_backend.get_mesh()["tp"],
transformer=self.transformer,
)
# Enable gradient checkpointing
if self.args.gradient_checkpointing:
# TODO(aryan): support other checkpointing types
utils.apply_activation_checkpointing(self.transformer, checkpointing_type="full")
# Apply torch.compile
self._maybe_torch_compile()
# Enable DDP, FSDP or HSDP
if parallel_backend.data_sharding_enabled:
# TODO(aryan): remove this when supported
if self.args.parallel_backend == "accelerate":
raise NotImplementedError("Data sharding is not supported with Accelerate yet.")
dp_method = "HSDP" if parallel_backend.data_replication_enabled else "FSDP"
logger.info(f"Applying {dp_method} on the model")
if parallel_backend.data_replication_enabled or parallel_backend.context_parallel_enabled:
dp_mesh_names = ("dp_replicate", "dp_shard_cp")
else:
dp_mesh_names = ("dp_shard_cp",)
parallel_backend.apply_fsdp2(
model=self.transformer,
param_dtype=self.args.transformer_dtype,
reduce_dtype=torch.float32,
output_dtype=None,
pp_enabled=parallel_backend.pipeline_parallel_enabled,
cpu_offload=False, # TODO(aryan): needs to be tested and allowed for enabling later
device_mesh=parallel_backend.get_mesh()[dp_mesh_names],
)
elif parallel_backend.data_replication_enabled:
if parallel_backend.get_mesh().ndim > 1:
raise ValueError("DDP not supported for > 1D parallelism")
parallel_backend.apply_ddp(self.transformer, parallel_backend.get_mesh())
else:
parallel_backend.prepare_model(self.transformer)
self._move_components_to_device()
# 2. Prepare optimizer and lr scheduler
# For training LoRAs, we can be a little more optimal. Currently, the OptimizerWrapper only accepts torch::nn::Module.
# This causes us to loop over all the parameters (even ones that don't require gradients, as in LoRA) at each optimizer
# step. This is OK (see https://github.com/pytorch/pytorch/blob/2f40f789dafeaa62c4e4b90dbf4a900ff6da2ca4/torch/optim/sgd.py#L85-L99)
# but can be optimized a bit by maybe creating a simple wrapper module encompassing the actual parameters that require
# gradients. TODO(aryan): look into it in the future.
model_parts = [self.transformer]
self.state.num_trainable_parameters = sum(
p.numel() for m in model_parts for p in m.parameters() if p.requires_grad
)
# Setup distributed optimizer and lr scheduler
logger.info("Initializing optimizer and lr scheduler")
self.state.train_state = TrainState()
self.optimizer = optimizer.get_optimizer(
parallel_backend=self.args.parallel_backend,
name=self.args.optimizer,
model_parts=model_parts,
learning_rate=self.args.lr,
beta1=self.args.beta1,
beta2=self.args.beta2,
beta3=self.args.beta3,
epsilon=self.args.epsilon,
weight_decay=self.args.weight_decay,
fused=False,
)
self.lr_scheduler = optimizer.get_lr_scheduler(
parallel_backend=self.args.parallel_backend,
name=self.args.lr_scheduler,
optimizer=self.optimizer,
num_warmup_steps=self.args.lr_warmup_steps,
num_training_steps=self.args.train_steps,
# TODO(aryan): handle last_epoch
)
self.optimizer, self.lr_scheduler = parallel_backend.prepare_optimizer(self.optimizer, self.lr_scheduler)
# 3. Initialize trackers, directories and repositories
self._init_logging()
self._init_trackers()
self._init_directories_and_repositories()
def _prepare_dataset(self) -> None:
logger.info("Initializing dataset and dataloader")
with open(self.args.dataset_config, "r") as file:
dataset_configs = json.load(file)["datasets"]
logger.info(f"Training configured to use {len(dataset_configs)} datasets")
datasets = []
for config in dataset_configs:
data_root = config.pop("data_root", None)
dataset_file = config.pop("dataset_file", None)
dataset_type = config.pop("dataset_type")
caption_options = config.pop("caption_options", {})
if data_root is not None and dataset_file is not None:
raise ValueError("Both data_root and dataset_file cannot be provided in the same dataset config.")
dataset_name_or_root = data_root or dataset_file
dataset = data.initialize_dataset(
dataset_name_or_root, dataset_type, streaming=True, infinite=True, _caption_options=caption_options
)
if not dataset._precomputable_once and self.args.precomputation_once:
raise ValueError(
f"Dataset {dataset_name_or_root} does not support precomputing all embeddings at once."
)
logger.info(f"Initialized dataset: {dataset_name_or_root}")
dataset = self.state.parallel_backend.prepare_dataset(dataset)
dataset = data.wrap_iterable_dataset_for_preprocessing(dataset, dataset_type, config)
datasets.append(dataset)
dataset = data.combine_datasets(datasets, buffer_size=self.args.dataset_shuffle_buffer_size, shuffle=True)
dataset = IterableControlDataset(dataset, self.args.control_type, self.state.parallel_backend.device)
dataloader = self.state.parallel_backend.prepare_dataloader(
dataset, batch_size=1, num_workers=self.args.dataloader_num_workers, pin_memory=self.args.pin_memory
)
self.dataset = dataset
self.dataloader = dataloader
def _prepare_checkpointing(self) -> None:
parallel_backend = self.state.parallel_backend
def save_model_hook(state_dict: Dict[str, Any]) -> None:
state_dict = utils.get_unwrapped_model_state_dict(state_dict)
if parallel_backend.is_main_process:
if self.args.training_type == TrainingType.CONTROL_LORA:
state_dict = get_peft_model_state_dict(self.transformer, state_dict)
qk_norm_state_dict = None
if self.args.train_qk_norm:
qk_norm_state_dict = {
name: parameter
for name, parameter in state_dict.items()
if any(
re.search(identifier, name) is not None
for identifier in self.model_specification._qk_norm_identifiers
)
and parameter.numel() > 0
}
if len(qk_norm_state_dict) == 0:
qk_norm_state_dict = None
# fmt: off
metadata = {
"r": self.args.rank,
"lora_alpha": self.args.lora_alpha,
"init_lora_weights": True,
"target_modules": self._get_lora_target_modules(),
"rank_pattern": {self.model_specification.control_injection_layer_name: self.model_specification._original_control_layer_out_features},
"alpha_pattern": {self.model_specification.control_injection_layer_name: self.model_specification._original_control_layer_out_features},
}
metadata = {"lora_config": json.dumps(metadata, indent=4)}
# fmt: on
self.model_specification._save_lora_weights(
os.path.join(self.args.output_dir, "lora_weights", f"{self.state.train_state.step:06d}"),
state_dict,
qk_norm_state_dict,
self.scheduler,
metadata,
)
elif self.args.training_type == TrainingType.CONTROL_FULL_FINETUNE:
self.model_specification._save_model(
os.path.join(self.args.output_dir, "model_weights", f"{self.state.train_state.step:06d}"),
self.transformer,
state_dict,
self.scheduler,
)
parallel_backend.wait_for_everyone()
enable_state_checkpointing = self.args.checkpointing_steps > 0
self.checkpointer = parallel_backend.get_checkpointer(
dataloader=self.dataloader,
model_parts=[self.transformer],
optimizers=self.optimizer,
schedulers=self.lr_scheduler,
states={"train_state": self.state.train_state},
checkpointing_steps=self.args.checkpointing_steps,
checkpointing_limit=self.args.checkpointing_limit,
output_dir=self.args.output_dir,
enable=enable_state_checkpointing,
_callback_fn=save_model_hook,
)
resume_from_checkpoint = self.args.resume_from_checkpoint
if resume_from_checkpoint == "latest":
resume_from_checkpoint = -1
if resume_from_checkpoint is not None:
self.checkpointer.load(resume_from_checkpoint)
def _train(self) -> None:
logger.info("Starting training")
parallel_backend = self.state.parallel_backend
train_state = self.state.train_state
device = parallel_backend.device
dtype = self.args.transformer_dtype
memory_statistics = utils.get_memory_statistics()
logger.info(f"Memory before training start: {json.dumps(memory_statistics, indent=4)}")
global_batch_size = self.args.batch_size * parallel_backend._dp_degree
info = {
"trainable parameters": self.state.num_trainable_parameters,
"train steps": self.args.train_steps,
"per-replica batch size": self.args.batch_size,
"global batch size": global_batch_size,
"gradient accumulation steps": self.args.gradient_accumulation_steps,
}
logger.info(f"Training configuration: {json.dumps(info, indent=4)}")
progress_bar = tqdm(
range(0, self.args.train_steps),
initial=train_state.step,
desc="Training steps",
disable=not parallel_backend.is_local_main_process,
)
generator = torch.Generator(device=device)
if self.args.seed is not None:
generator = generator.manual_seed(self.args.seed)
self.state.generator = generator
scheduler_sigmas = utils.get_scheduler_sigmas(self.scheduler)
scheduler_sigmas = (
scheduler_sigmas.to(device=device, dtype=torch.float32) if scheduler_sigmas is not None else None
)
scheduler_alphas = utils.get_scheduler_alphas(self.scheduler)
scheduler_alphas = (
scheduler_alphas.to(device=device, dtype=torch.float32) if scheduler_alphas is not None else None
)
# timesteps_buffer = []
self.transformer.train()
data_iterator = iter(self.dataloader)
compute_posterior = False if self.args.enable_precomputation else (not self.args.precomputation_once)
preprocessor = data.initialize_preprocessor(
rank=parallel_backend.rank,
world_size=parallel_backend.world_size,
num_items=self.args.precomputation_items if self.args.enable_precomputation else 1,
processor_fn={
"condition": self.model_specification.prepare_conditions,
"latent": functools.partial(
self.model_specification.prepare_latents, compute_posterior=compute_posterior
),
},
save_dir=self.args.precomputation_dir,
enable_precomputation=self.args.enable_precomputation,
enable_reuse=self.args.precomputation_reuse,
)
condition_iterator: Iterable[Dict[str, Any]] = None
latent_iterator: Iterable[Dict[str, Any]] = None
sampler = data.ResolutionSampler(
batch_size=self.args.batch_size, dim_keys=self.model_specification._resolution_dim_keys
)
requires_gradient_step = True
accumulated_loss = 0.0
while (
train_state.step < self.args.train_steps and train_state.observed_data_samples < self.args.max_data_samples
):
# 1. Load & preprocess data if required
if preprocessor.requires_data:
condition_iterator, latent_iterator = self._prepare_data(preprocessor, data_iterator)
# 2. Prepare batch
with self.tracker.timed("timing/batch_preparation"):
try:
condition_item = next(condition_iterator)
latent_item = next(latent_iterator)
sampler.consume(condition_item, latent_item)
except StopIteration:
if requires_gradient_step:
self.optimizer.step()
self.lr_scheduler.step()
requires_gradient_step = False
logger.info("Data exhausted. Exiting training loop.")
break
if sampler.is_ready:
condition_batch, latent_batch = sampler.get_batch()
condition_model_conditions = self.model_specification.collate_conditions(condition_batch)
latent_model_conditions = self.model_specification.collate_latents(latent_batch)
else:
continue
train_state.step += 1
train_state.observed_data_samples += self.args.batch_size * parallel_backend._dp_degree
logger.debug(f"Starting training step ({train_state.step}/{self.args.train_steps})")
latent_model_conditions = utils.align_device_and_dtype(latent_model_conditions, device, dtype)
condition_model_conditions = utils.align_device_and_dtype(condition_model_conditions, device, dtype)
latent_model_conditions = utils.make_contiguous(latent_model_conditions)
condition_model_conditions = utils.make_contiguous(condition_model_conditions)
# 3. Forward pass
sigmas = utils.prepare_sigmas(
scheduler=self.scheduler,
sigmas=scheduler_sigmas,
batch_size=self.args.batch_size,
num_train_timesteps=self.scheduler.config.num_train_timesteps,
flow_weighting_scheme=self.args.flow_weighting_scheme,
flow_logit_mean=self.args.flow_logit_mean,
flow_logit_std=self.args.flow_logit_std,
flow_mode_scale=self.args.flow_mode_scale,
device=device,
generator=self.state.generator,
)
sigmas = utils.expand_tensor_dims(sigmas, latent_model_conditions["latents"].ndim)
# NOTE: for planned refactor, make sure that forward and backward pass run under the context.
# If only forward runs under context, backward will most likely fail when using activation checkpointing
with self.attention_provider_ctx(training=True):
with self.tracker.timed("timing/forward"):
pred, target, sigmas = self.model_specification.forward(
transformer=self.transformer,
scheduler=self.scheduler,
condition_model_conditions=condition_model_conditions,
latent_model_conditions=latent_model_conditions,
sigmas=sigmas,
compute_posterior=compute_posterior,
)
timesteps = (sigmas * 1000.0).long()
weights = utils.prepare_loss_weights(
scheduler=self.scheduler,
alphas=scheduler_alphas[timesteps] if scheduler_alphas is not None else None,
sigmas=sigmas,
flow_weighting_scheme=self.args.flow_weighting_scheme,
)
weights = utils.expand_tensor_dims(weights, pred.ndim)
# 4. Compute loss & backward pass
with self.tracker.timed("timing/backward"):
loss = weights.float() * (pred.float() - target.float()).pow(2)
# Average loss across all but batch dimension (for per-batch debugging in case needed)
loss = loss.mean(list(range(1, loss.ndim)))
# Average loss across batch dimension
loss = loss.mean()
if self.args.gradient_accumulation_steps > 1:
loss = loss / self.args.gradient_accumulation_steps
loss.backward()
accumulated_loss += loss.detach().item()
requires_gradient_step = True
# 5. Clip gradients
model_parts = [self.transformer]
grad_norm = utils.torch._clip_grad_norm_while_handling_failing_dtensor_cases(
[p for m in model_parts for p in m.parameters()],
self.args.max_grad_norm,
foreach=True,
pp_mesh=parallel_backend.get_mesh()["pp"] if parallel_backend.pipeline_parallel_enabled else None,
)
# 6. Step optimizer & log metrics
logs = {}
if train_state.step % self.args.gradient_accumulation_steps == 0:
# TODO(aryan): revisit no_sync() for FSDP
with self.tracker.timed("timing/optimizer_step"):
self.optimizer.step()
self.lr_scheduler.step()
self.optimizer.zero_grad()
if grad_norm is not None:
grad_norm = grad_norm if isinstance(grad_norm, float) else grad_norm.detach().item()
if (
parallel_backend.data_replication_enabled
or parallel_backend.data_sharding_enabled
or parallel_backend.context_parallel_enabled
):
dp_cp_mesh = parallel_backend.get_mesh()["dp_cp"]
if grad_norm is not None:
grad_norm = parallel.dist_mean(torch.tensor([grad_norm], device=device), dp_cp_mesh)
global_avg_loss, global_max_loss = (
parallel.dist_mean(torch.tensor([accumulated_loss], device=device), dp_cp_mesh),
parallel.dist_max(torch.tensor([accumulated_loss], device=device), dp_cp_mesh),
)
else:
global_avg_loss = global_max_loss = accumulated_loss
logs["train/global_avg_loss"] = global_avg_loss
logs["train/global_max_loss"] = global_max_loss
if grad_norm is not None:
logs["train/grad_norm"] = grad_norm
train_state.global_avg_losses.append(global_avg_loss)
train_state.global_max_losses.append(global_max_loss)
accumulated_loss = 0.0
requires_gradient_step = False
progress_bar.update(1)
progress_bar.set_postfix(logs)
# timesteps_buffer.extend([(train_state.step, t) for t in timesteps.detach().cpu().numpy().tolist()])
if train_state.step % self.args.logging_steps == 0:
# TODO(aryan): handle non-SchedulerWrapper schedulers (probably not required eventually) since they might not be dicts
# TODO(aryan): causes NCCL hang for some reason. look into later
# logs.update(self.lr_scheduler.get_last_lr())
# timesteps_table = wandb.Table(data=timesteps_buffer, columns=["step", "timesteps"])
# logs["timesteps"] = wandb.plot.scatter(
# timesteps_table, "step", "timesteps", title="Timesteps distribution"
# )
# timesteps_buffer = []
logs["train/observed_data_samples"] = train_state.observed_data_samples
parallel_backend.log(logs, step=train_state.step)
train_state.log_steps.append(train_state.step)
# 7. Save checkpoint if required
with self.tracker.timed("timing/checkpoint"):
self.checkpointer.save(
step=train_state.step, _device=device, _is_main_process=parallel_backend.is_main_process
)
# 8. Perform validation if required
if train_state.step % self.args.validation_steps == 0:
self._validate(step=train_state.step, final_validation=False)
# 9. Final checkpoint, validation & cleanup
self.checkpointer.save(
train_state.step, force=True, _device=device, _is_main_process=parallel_backend.is_main_process
)
parallel_backend.wait_for_everyone()
self._validate(step=train_state.step, final_validation=True)
self._delete_components()
memory_statistics = utils.get_memory_statistics()
logger.info(f"Memory after training end: {json.dumps(memory_statistics, indent=4)}")
# 10. Upload artifacts to hub
if parallel_backend.is_main_process and self.args.push_to_hub:
upload_folder(
repo_id=self.state.repo_id,
folder_path=self.args.output_dir,
ignore_patterns=[f"{self.checkpointer._prefix}_*"],
)
parallel_backend.destroy()
def _validate(self, step: int, final_validation: bool = False) -> None:
if self.args.validation_dataset_file is None:
return
logger.info("Starting validation")
# 1. Load validation dataset
parallel_backend = self.state.parallel_backend
dataset = data.ValidationDataset(self.args.validation_dataset_file)
# Hack to make accelerate work. TODO(aryan): refactor
if parallel_backend._dp_degree > 1:
dp_mesh = parallel_backend.get_mesh()["dp"]
dp_local_rank, dp_world_size = dp_mesh.get_local_rank(), dp_mesh.size()
dataset._data = datasets.distributed.split_dataset_by_node(dataset._data, dp_local_rank, dp_world_size)
else:
dp_mesh = None
dp_local_rank, dp_world_size = parallel_backend.local_rank, 1
dataset = ValidationControlDataset(dataset, self.args.control_type, parallel_backend.device)
validation_dataloader = data.DPDataLoader(
dp_local_rank,
dataset,
batch_size=1,
num_workers=self.args.dataloader_num_workers,
collate_fn=lambda items: items,
)
data_iterator = iter(validation_dataloader)
main_process_prompts_to_filenames = {} # Used to save model card
all_processes_artifacts = [] # Used to gather artifacts from all processes
memory_statistics = utils.get_memory_statistics()
logger.info(f"Memory before validation start: {json.dumps(memory_statistics, indent=4)}")
seed = self.args.seed if self.args.seed is not None else 0
generator = torch.Generator(device=parallel_backend.device).manual_seed(seed)
pipeline = self._init_pipeline(final_validation=final_validation)
# 2. Run validation
# TODO(aryan): when running validation with FSDP, if the number of data points is not divisible by dp_shards, we
# will hang indefinitely. Either pad the dataset or raise an error early on during initialization if the dataset
# size is not divisible by dp_shards.
self.transformer.eval()
while True:
validation_data = next(data_iterator, None)
if validation_data is None:
break
validation_data = validation_data[0]
with self.attention_provider_ctx(training=False):
validation_artifacts = self.model_specification.validation(
pipeline=pipeline, generator=generator, **validation_data
)
if dp_local_rank != 0:
continue
PROMPT = validation_data["prompt"]
IMAGE = validation_data.get("image", None)
VIDEO = validation_data.get("video", None)
CONTROL_IMAGE = validation_data.get("control_image", None)
CONTROL_VIDEO = validation_data.get("control_video", None)
EXPORT_FPS = validation_data.get("export_fps", 30)
# 2.1. If there are any initial images or videos, they will be logged to keep track of them as
# conditioning for generation.
prompt_filename = utils.string_to_filename(PROMPT)[:25]
artifacts = {
"input_image": data.ImageArtifact(value=IMAGE),
"input_video": data.VideoArtifact(value=VIDEO),
"control_image": data.ImageArtifact(value=CONTROL_IMAGE),
"control_video": data.VideoArtifact(value=CONTROL_VIDEO),
}
# 2.2. Track the artifacts generated from validation
for i, validation_artifact in enumerate(validation_artifacts):
if validation_artifact.value is None:
continue
artifacts.update({f"artifact_{i}": validation_artifact})
# 2.3. Save the artifacts to the output directory and create appropriate logging objects
# TODO(aryan): Currently, we only support WandB so we've hardcoded it here. Needs to be revisited.
for index, (key, artifact) in enumerate(list(artifacts.items())):
assert isinstance(artifact, (data.ImageArtifact, data.VideoArtifact))
if artifact.value is None:
continue
time_, rank, ext = int(time.time()), parallel_backend.rank, artifact.file_extension
filename = "validation-" if not final_validation else "final-"
filename += f"{step}-{rank}-{index}-{prompt_filename}-{time_}.{ext}"
if parallel_backend.is_main_process and ext in ["mp4", "jpg", "jpeg", "png"]:
main_process_prompts_to_filenames[PROMPT] = filename
caption = PROMPT
if key == "control_image":
filename = f"control_image-{filename}"
caption = f"[control] {caption}"
elif key == "control_video":
filename = f"control_video-{filename}"
caption = f"[control] {caption}"
output_filename = os.path.join(self.args.output_dir, filename)
if isinstance(artifact, data.ImageArtifact):
artifact.value.save(output_filename)
all_processes_artifacts.append(wandb.Image(output_filename, caption=caption))
elif isinstance(artifact, data.VideoArtifact):
export_to_video(artifact.value, output_filename, fps=EXPORT_FPS)
all_processes_artifacts.append(wandb.Video(output_filename, caption=caption))
# 3. Cleanup & log artifacts
parallel_backend.wait_for_everyone()
memory_statistics = utils.get_memory_statistics()
logger.info(f"Memory after validation end: {json.dumps(memory_statistics, indent=4)}")
# Remove all hooks that might have been added during pipeline initialization to the models
pipeline.remove_all_hooks()
del pipeline
module_names = ["text_encoder", "text_encoder_2", "text_encoder_3", "vae"]
if self.args.enable_precomputation:
self._delete_components(module_names)
torch.cuda.reset_peak_memory_stats(parallel_backend.device)
# Gather artifacts from all processes. We also need to flatten them since each process returns a list of artifacts.
all_artifacts = [None] * dp_world_size
if dp_world_size > 1:
torch.distributed.all_gather_object(all_artifacts, all_processes_artifacts)
else:
all_artifacts = [all_processes_artifacts]
all_artifacts = [artifact for artifacts in all_artifacts for artifact in artifacts]
if parallel_backend.is_main_process:
tracker_key = "final" if final_validation else "validation"
artifact_log_dict = {}
image_artifacts = [artifact for artifact in all_artifacts if isinstance(artifact, wandb.Image)]
if len(image_artifacts) > 0:
artifact_log_dict["images"] = image_artifacts
video_artifacts = [artifact for artifact in all_artifacts if isinstance(artifact, wandb.Video)]
if len(video_artifacts) > 0:
artifact_log_dict["videos"] = video_artifacts
parallel_backend.log({tracker_key: artifact_log_dict}, step=step)
if self.args.push_to_hub and final_validation:
video_filenames = list(main_process_prompts_to_filenames.values())
prompts = list(main_process_prompts_to_filenames.keys())
utils.save_model_card(
args=self.args, repo_id=self.state.repo_id, videos=video_filenames, validation_prompts=prompts
)
parallel_backend.wait_for_everyone()
if not final_validation:
self._move_components_to_device()
self.transformer.train()
def _evaluate(self) -> None:
raise NotImplementedError("Evaluation has not been implemented yet.")
def _init_directories_and_repositories(self) -> None:
if self.state.parallel_backend.is_main_process:
self.args.output_dir = Path(self.args.output_dir)
self.args.output_dir.mkdir(parents=True, exist_ok=True)
self.state.output_dir = Path(self.args.output_dir)
if self.args.push_to_hub:
repo_id = self.args.hub_model_id or Path(self.args.output_dir).name
self.state.repo_id = create_repo(token=self.args.hub_token, repo_id=repo_id, exist_ok=True).repo_id
def _move_components_to_device(
self, components: Optional[List[torch.nn.Module]] = None, device: Optional[Union[str, torch.device]] = None
) -> None:
if device is None:
device = self.state.parallel_backend.device
if components is None:
components = [self.text_encoder, self.text_encoder_2, self.text_encoder_3, self.transformer, self.vae]
components = utils.get_non_null_items(components)
components = list(filter(lambda x: hasattr(x, "to"), components))
for component in components:
component.to(device)
def _set_components(self, components: Dict[str, Any]) -> None:
for component_name in self._all_component_names:
existing_component = getattr(self, component_name, None)
new_component = components.get(component_name, existing_component)
setattr(self, component_name, new_component)
def _delete_components(self, component_names: Optional[List[str]] = None) -> None:
if component_names is None:
component_names = self._all_component_names
for component_name in component_names:
setattr(self, component_name, None)
utils.free_memory()
utils.synchronize_device()
def _init_pipeline(self, final_validation: bool = False) -> DiffusionPipeline:
parallel_backend = self.state.parallel_backend
module_names = ["text_encoder", "text_encoder_2", "text_encoder_3", "transformer", "vae"]
if not final_validation:
module_names.remove("transformer")
pipeline = self.model_specification.load_pipeline(
tokenizer=self.tokenizer,
tokenizer_2=self.tokenizer_2,
tokenizer_3=self.tokenizer_3,
text_encoder=self.text_encoder,
text_encoder_2=self.text_encoder_2,
text_encoder_3=self.text_encoder_3,
# TODO(aryan): handle unwrapping for compiled modules
# transformer=utils.unwrap_model(accelerator, self.transformer),
transformer=self.transformer,
vae=self.vae,
enable_slicing=self.args.enable_slicing,
enable_tiling=self.args.enable_tiling,
enable_model_cpu_offload=self.args.enable_model_cpu_offload,
training=True,
)
else:
self._delete_components()
# TODO(aryan): allow multiple control conditions instead of just one if there's a use case for it
new_in_features = self.model_specification._original_control_layer_in_features * 2
if self.args.frame_conditioning_concatenate_mask:
new_in_features += 1
transformer = self.model_specification.load_diffusion_models(new_in_features)["transformer"]
pipeline = self.model_specification.load_pipeline(
transformer=transformer,
enable_slicing=self.args.enable_slicing,
enable_tiling=self.args.enable_tiling,
enable_model_cpu_offload=self.args.enable_model_cpu_offload,
training=False,
device=parallel_backend.device,
)
# Load the LoRA weights if performing LoRA finetuning
if self.args.training_type == TrainingType.CONTROL_LORA:
load_lora_weights(
pipeline, os.path.join(self.args.output_dir, "lora_weights", f"{self.state.train_state.step:06d}")
)
norm_state_dict_path = os.path.join(
self.args.output_dir,
"lora_weights",
f"{self.state.train_state.step:06d}",
"norm_state_dict.safetensors",
)
if self.args.train_qk_norm and norm_state_dict_path.exists():
norm_state_dict = safetensors.torch.load_file(norm_state_dict_path, parallel_backend.device)
self.transformer.load_state_dict(norm_state_dict)
components = {module_name: getattr(pipeline, module_name, None) for module_name in module_names}
self._set_components(components)
if not self.args.enable_model_cpu_offload:
self._move_components_to_device(list(components.values()))
self._maybe_torch_compile()
return pipeline
def _prepare_data(
self,
preprocessor: Union[data.InMemoryDistributedDataPreprocessor, data.PrecomputedDistributedDataPreprocessor],
data_iterator,
):
if not self.args.enable_precomputation:
if not self._are_condition_models_loaded:
logger.info(
"Precomputation disabled. Loading in-memory data loaders. All components will be loaded on GPUs."
)
condition_components = self.model_specification.load_condition_models()
latent_components = self.model_specification.load_latent_models()
all_components = {**condition_components, **latent_components}
self._set_components(all_components)
self._move_components_to_device(list(all_components.values()))
utils._enable_vae_memory_optimizations(self.vae, self.args.enable_slicing, self.args.enable_tiling)
self._maybe_torch_compile()
else:
condition_components = {k: v for k in self._condition_component_names if (v := getattr(self, k, None))}
latent_components = {k: v for k in self._latent_component_names if (v := getattr(self, k, None))}
condition_iterator = preprocessor.consume(
"condition",
components=condition_components,
data_iterator=data_iterator,
generator=self.state.generator,
cache_samples=True,
)
latent_iterator = preprocessor.consume(
"latent",
components=latent_components,
data_iterator=data_iterator,
generator=self.state.generator,
use_cached_samples=True,
drop_samples=True,
)
self._are_condition_models_loaded = True
else:
logger.info("Precomputed condition & latent data exhausted. Loading & preprocessing new data.")
parallel_backend = self.state.parallel_backend
if parallel_backend.world_size == 1:
self._move_components_to_device([self.transformer], "cpu")
utils.free_memory()
utils.synchronize_device()
torch.cuda.reset_peak_memory_stats(parallel_backend.device)
consume_fn = preprocessor.consume_once if self.args.precomputation_once else preprocessor.consume
# Prepare condition iterators
condition_components, component_names, component_modules = {}, [], []
if not self.args.precomputation_reuse:
condition_components = self.model_specification.load_condition_models()
component_names = list(condition_components.keys())
component_modules = list(condition_components.values())
self._set_components(condition_components)
self._move_components_to_device(component_modules)
self._maybe_torch_compile()
condition_iterator = consume_fn(
"condition",
components=condition_components,
data_iterator=data_iterator,
generator=self.state.generator,
cache_samples=True,
)
self._delete_components(component_names)
del condition_components, component_names, component_modules
# Prepare latent iterators
latent_components, component_names, component_modules = {}, [], []
if not self.args.precomputation_reuse:
latent_components = self.model_specification.load_latent_models()
utils._enable_vae_memory_optimizations(self.vae, self.args.enable_slicing, self.args.enable_tiling)
component_names = list(latent_components.keys())
component_modules = list(latent_components.values())
self._set_components(latent_components)
self._move_components_to_device(component_modules)
self._maybe_torch_compile()
latent_iterator = consume_fn(
"latent",
components=latent_components,
data_iterator=data_iterator,
generator=self.state.generator,
use_cached_samples=True,
drop_samples=True,
)
self._delete_components(component_names)
del latent_components, component_names, component_modules
if parallel_backend.world_size == 1:
self._move_components_to_device([self.transformer])
return condition_iterator, latent_iterator
def _maybe_torch_compile(self):
for model_name, compile_scope in zip(self.args.compile_modules, self.args.compile_scopes):
model = getattr(self, model_name, None)
if model is not None:
logger.info(f"Applying torch.compile to '{model_name}' with scope '{compile_scope}'.")
compiled_model = utils.apply_compile(model, compile_scope)
setattr(self, model_name, compiled_model)
def _get_training_info(self) -> Dict[str, Any]:
info = self.args.to_dict()
# Removing flow matching arguments when not using flow-matching objective
diffusion_args = info.get("diffusion_arguments", {})
scheduler_name = self.scheduler.__class__.__name__ if self.scheduler is not None else ""
if scheduler_name != "FlowMatchEulerDiscreteScheduler":
filtered_diffusion_args = {k: v for k, v in diffusion_args.items() if "flow" not in k}
else:
filtered_diffusion_args = diffusion_args
info.update({"diffusion_arguments": filtered_diffusion_args})
return info
def _get_lora_target_modules(self):
target_modules = self.args.target_modules
if isinstance(target_modules, list):
target_modules = list(target_modules) # Make a copy to avoid modifying args
target_modules.append(f"^{self.model_specification.control_injection_layer_name}$")
if isinstance(target_modules, str):
target_modules = f"(^{self.model_specification.control_injection_layer_name}$)|({target_modules})"
return target_modules
# fmt: off
_all_component_names = ["tokenizer", "tokenizer_2", "tokenizer_3", "text_encoder", "text_encoder_2", "text_encoder_3", "transformer", "unet", "vae", "scheduler"]
_condition_component_names = ["tokenizer", "tokenizer_2", "tokenizer_3", "text_encoder", "text_encoder_2", "text_encoder_3"]
_latent_component_names = ["vae"]
_diffusion_component_names = ["transformer", "unet", "scheduler"]
# fmt: on
|