File size: 11,902 Bytes
9fd1204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import pathlib
import tempfile
import unittest

import torch
from PIL import Image

from finetrainers.data import (
    ImageCaptionFilePairDataset,
    ImageFileCaptionFileListDataset,
    ImageFolderDataset,
    ValidationDataset,
    VideoCaptionFilePairDataset,
    VideoFileCaptionFileListDataset,
    VideoFolderDataset,
    VideoWebDataset,
    initialize_dataset,
)
from finetrainers.utils import find_files

from .utils import create_dummy_directory_structure


class DatasetTesterMixin:
    num_data_files = None
    directory_structure = None
    caption = "A cat ruling the world"
    metadata_extension = None

    def setUp(self):
        if self.num_data_files is None:
            raise ValueError("num_data_files is not defined")
        if self.directory_structure is None:
            raise ValueError("dataset_structure is not defined")

        self.tmpdir = tempfile.TemporaryDirectory()
        create_dummy_directory_structure(
            self.directory_structure, self.tmpdir, self.num_data_files, self.caption, self.metadata_extension
        )

    def tearDown(self):
        self.tmpdir.cleanup()


class ImageDatasetTesterMixin(DatasetTesterMixin):
    metadata_extension = "jpg"


class VideoDatasetTesterMixin(DatasetTesterMixin):
    metadata_extension = "mp4"


class ImageCaptionFilePairDatasetFastTests(ImageDatasetTesterMixin, unittest.TestCase):
    num_data_files = 3
    directory_structure = [
        "0.jpg",
        "1.jpg",
        "2.jpg",
        "0.txt",
        "1.txt",
        "2.txt",
    ]

    def setUp(self):
        super().setUp()
        self.dataset = ImageCaptionFilePairDataset(self.tmpdir.name, infinite=False)

    def test_getitem(self):
        iterator = iter(self.dataset)
        for _ in range(self.num_data_files):
            item = next(iterator)
            self.assertEqual(item["caption"], self.caption)
            self.assertTrue(torch.is_tensor(item["image"]))
            self.assertEqual(item["image"].shape, (3, 64, 64))

    def test_initialize_dataset(self):
        dataset = initialize_dataset(self.tmpdir.name, "image", infinite=False)
        self.assertIsInstance(dataset, ImageCaptionFilePairDataset)


class ImageFileCaptionFileListDatasetFastTests(ImageDatasetTesterMixin, unittest.TestCase):
    num_data_files = 3
    directory_structure = [
        "prompts.txt",
        "images.txt",
        "images/",
        "images/0.jpg",
        "images/1.jpg",
        "images/2.jpg",
    ]

    def setUp(self):
        super().setUp()
        self.dataset = ImageFileCaptionFileListDataset(self.tmpdir.name, infinite=False)

    def test_getitem(self):
        iterator = iter(self.dataset)
        for i in range(3):
            item = next(iterator)
            self.assertEqual(item["caption"], self.caption)
            self.assertTrue(torch.is_tensor(item["image"]))
            self.assertEqual(item["image"].shape, (3, 64, 64))

    def test_initialize_dataset(self):
        dataset = initialize_dataset(self.tmpdir.name, "image", infinite=False)
        self.assertIsInstance(dataset, ImageFileCaptionFileListDataset)


class ImageFolderDatasetFastTests___CSV(ImageDatasetTesterMixin, unittest.TestCase):
    num_data_files = 3
    directory_structure = [
        "metadata.csv",
        "0.jpg",
        "1.jpg",
        "2.jpg",
    ]

    def setUp(self):
        super().setUp()
        self.dataset = ImageFolderDataset(self.tmpdir.name, infinite=False)

    def test_getitem(self):
        iterator = iter(self.dataset)
        for _ in range(3):
            item = next(iterator)
            self.assertIn("caption", item)
            self.assertEqual(item["caption"], self.caption)
            self.assertTrue(torch.is_tensor(item["image"]))

    def test_initialize_dataset(self):
        dataset = initialize_dataset(self.tmpdir.name, "image", infinite=False)
        self.assertIsInstance(dataset, ImageFolderDataset)


class ImageFolderDatasetFastTests___JSONL(ImageDatasetTesterMixin, unittest.TestCase):
    num_data_files = 3
    directory_structure = [
        "metadata.jsonl",
        "0.jpg",
        "1.jpg",
        "2.jpg",
    ]

    def setUp(self):
        super().setUp()
        self.dataset = ImageFolderDataset(self.tmpdir.name, infinite=False)

    def test_getitem(self):
        iterator = iter(self.dataset)
        for _ in range(3):
            item = next(iterator)
            self.assertIn("caption", item)
            self.assertEqual(item["caption"], self.caption)
            self.assertTrue(torch.is_tensor(item["image"]))

    def test_initialize_dataset(self):
        dataset = initialize_dataset(self.tmpdir.name, "image", infinite=False)
        self.assertIsInstance(dataset, ImageFolderDataset)


class VideoCaptionFilePairDatasetFastTests(VideoDatasetTesterMixin, unittest.TestCase):
    num_data_files = 3
    directory_structure = [
        "0.mp4",
        "1.mp4",
        "2.mp4",
        "0.txt",
        "1.txt",
        "2.txt",
    ]

    def setUp(self):
        super().setUp()
        self.dataset = VideoCaptionFilePairDataset(self.tmpdir.name, infinite=False)

    def test_getitem(self):
        iterator = iter(self.dataset)
        for _ in range(self.num_data_files):
            item = next(iterator)
            self.assertEqual(item["caption"], self.caption)
            self.assertTrue(torch.is_tensor(item["video"]))
            self.assertEqual(len(item["video"]), 4)
            self.assertEqual(item["video"][0].shape, (3, 64, 64))

    def test_initialize_dataset(self):
        dataset = initialize_dataset(self.tmpdir.name, "video", infinite=False)
        self.assertIsInstance(dataset, VideoCaptionFilePairDataset)


class VideoFileCaptionFileListDatasetFastTests(VideoDatasetTesterMixin, unittest.TestCase):
    num_data_files = 3
    directory_structure = [
        "prompts.txt",
        "videos.txt",
        "videos/",
        "videos/0.mp4",
        "videos/1.mp4",
        "videos/2.mp4",
    ]

    def setUp(self):
        super().setUp()
        self.dataset = VideoFileCaptionFileListDataset(self.tmpdir.name, infinite=False)

    def test_getitem(self):
        iterator = iter(self.dataset)
        for _ in range(3):
            item = next(iterator)
            self.assertEqual(item["caption"], self.caption)
            self.assertTrue(torch.is_tensor(item["video"]))
            self.assertEqual(len(item["video"]), 4)
            self.assertEqual(item["video"][0].shape, (3, 64, 64))

    def test_initialize_dataset(self):
        dataset = initialize_dataset(self.tmpdir.name, "video", infinite=False)
        self.assertIsInstance(dataset, VideoFileCaptionFileListDataset)


class VideoFolderDatasetFastTests___CSV(VideoDatasetTesterMixin, unittest.TestCase):
    num_data_files = 3
    directory_structure = [
        "metadata.csv",
        "0.mp4",
        "1.mp4",
        "2.mp4",
    ]

    def setUp(self):
        super().setUp()
        self.dataset = VideoFolderDataset(self.tmpdir.name, infinite=False)

    def test_getitem(self):
        iterator = iter(self.dataset)
        for _ in range(3):
            item = next(iterator)
            self.assertIn("caption", item)
            self.assertEqual(item["caption"], self.caption)
            self.assertTrue(torch.is_tensor(item["video"]))
            self.assertEqual(len(item["video"]), 4)
            self.assertEqual(item["video"][0].shape, (3, 64, 64))

    def test_initialize_dataset(self):
        dataset = initialize_dataset(self.tmpdir.name, "video", infinite=False)
        self.assertIsInstance(dataset, VideoFolderDataset)


class VideoFolderDatasetFastTests___JSONL(VideoDatasetTesterMixin, unittest.TestCase):
    num_data_files = 3
    directory_structure = [
        "metadata.jsonl",
        "0.mp4",
        "1.mp4",
        "2.mp4",
    ]

    def setUp(self):
        super().setUp()
        self.dataset = VideoFolderDataset(self.tmpdir.name, infinite=False)

    def test_getitem(self):
        iterator = iter(self.dataset)
        for _ in range(3):
            item = next(iterator)
            self.assertIn("caption", item)
            self.assertEqual(item["caption"], self.caption)
            self.assertTrue(torch.is_tensor(item["video"]))
            self.assertEqual(len(item["video"]), 4)
            self.assertEqual(item["video"][0].shape, (3, 64, 64))

    def test_initialize_dataset(self):
        dataset = initialize_dataset(self.tmpdir.name, "video", infinite=False)
        self.assertIsInstance(dataset, VideoFolderDataset)


class ImageWebDatasetFastTests(unittest.TestCase):
    # TODO(aryan): setup a dummy dataset
    pass


class VideoWebDatasetFastTests(unittest.TestCase):
    def setUp(self):
        self.num_data_files = 15
        self.dataset = VideoWebDataset("finetrainers/dummy-squish-wds", infinite=False)

    def test_getitem(self):
        for index, item in enumerate(self.dataset):
            if index > 2:
                break
            self.assertIn("caption", item)
            self.assertIn("video", item)
            self.assertTrue(torch.is_tensor(item["video"]))
            self.assertEqual(len(item["video"]), 121)
            self.assertEqual(item["video"][0].shape, (3, 720, 1280))

    def test_initialize_dataset(self):
        dataset = initialize_dataset("finetrainers/dummy-squish-wds", "video", infinite=False)
        self.assertIsInstance(dataset, VideoWebDataset)


class DatasetUtilsFastTests(unittest.TestCase):
    def test_find_files_depth_0(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            file1 = tempfile.NamedTemporaryFile(dir=tmpdir, suffix=".txt", delete=False)
            file2 = tempfile.NamedTemporaryFile(dir=tmpdir, suffix=".txt", delete=False)
            file3 = tempfile.NamedTemporaryFile(dir=tmpdir, suffix=".txt", delete=False)

            files = find_files(tmpdir, "*.txt")
            self.assertEqual(len(files), 3)
            self.assertIn(file1.name, files)
            self.assertIn(file2.name, files)
            self.assertIn(file3.name, files)

    def test_find_files_depth_n(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            dir1 = tempfile.TemporaryDirectory(dir=tmpdir)
            dir2 = tempfile.TemporaryDirectory(dir=dir1.name)
            file1 = tempfile.NamedTemporaryFile(dir=dir1.name, suffix=".txt", delete=False)
            file2 = tempfile.NamedTemporaryFile(dir=dir2.name, suffix=".txt", delete=False)

            files = find_files(tmpdir, "*.txt", depth=1)
            self.assertEqual(len(files), 1)
            self.assertIn(file1.name, files)
            self.assertNotIn(file2.name, files)

            files = find_files(tmpdir, "*.txt", depth=2)
            self.assertEqual(len(files), 2)
            self.assertIn(file1.name, files)
            self.assertIn(file2.name, files)
            self.assertNotIn(dir1.name, files)
            self.assertNotIn(dir2.name, files)


class ValidationDatasetFastTests(unittest.TestCase):
    def setUp(self):
        num_data_files = 3

        self.tmpdir = tempfile.TemporaryDirectory()
        metadata_filename = pathlib.Path(self.tmpdir.name) / "metadata.csv"

        with open(metadata_filename, "w") as f:
            f.write("caption,image_path,video_path\n")
            for i in range(num_data_files):
                Image.new("RGB", (64, 64)).save((pathlib.Path(self.tmpdir.name) / f"{i}.jpg").as_posix())
                f.write(f"test caption,{self.tmpdir.name}/{i}.jpg,\n")

        self.dataset = ValidationDataset(metadata_filename.as_posix())

    def tearDown(self):
        self.tmpdir.cleanup()

    def test_getitem(self):
        for i, data in enumerate(self.dataset):
            self.assertEqual(data["image_path"], f"{self.tmpdir.name}/{i}.jpg")
            self.assertIsInstance(data["image"], Image.Image)
            self.assertEqual(data["image"].size, (64, 64))