File size: 8,059 Bytes
9fd1204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import os
import tempfile
import unittest

from finetrainers.data import (
    InMemoryDistributedDataPreprocessor,
    PrecomputedDistributedDataPreprocessor,
    VideoCaptionFilePairDataset,
    initialize_preprocessor,
    wrap_iterable_dataset_for_preprocessing,
)
from finetrainers.data.precomputation import PRECOMPUTED_DATA_DIR
from finetrainers.utils import find_files

from .utils import create_dummy_directory_structure


class PreprocessorFastTests(unittest.TestCase):
    def setUp(self):
        self.rank = 0
        self.world_size = 1
        self.num_items = 3
        self.processor_fn = {
            "latent": self._latent_processor_fn,
            "condition": self._condition_processor_fn,
        }
        self.save_dir = tempfile.TemporaryDirectory()

        directory_structure = [
            "0.mp4",
            "1.mp4",
            "2.mp4",
            "0.txt",
            "1.txt",
            "2.txt",
        ]
        create_dummy_directory_structure(
            directory_structure, self.save_dir, self.num_items, "a cat ruling the world", "mp4"
        )

        dataset = VideoCaptionFilePairDataset(self.save_dir.name, infinite=True)
        dataset = wrap_iterable_dataset_for_preprocessing(
            dataset,
            dataset_type="video",
            config={
                "video_resolution_buckets": [[2, 32, 32]],
                "reshape_mode": "bicubic",
            },
        )
        self.dataset = dataset

    def tearDown(self):
        self.save_dir.cleanup()

    @staticmethod
    def _latent_processor_fn(**data):
        video = data["video"]
        video = video[:, :, :16, :16]
        data["video"] = video
        return data

    @staticmethod
    def _condition_processor_fn(**data):
        caption = data["caption"]
        caption = caption + " surrounded by mystical aura"
        data["caption"] = caption
        return data

    def test_initialize_preprocessor(self):
        preprocessor = initialize_preprocessor(
            self.rank,
            self.world_size,
            self.num_items,
            self.processor_fn,
            self.save_dir.name,
            enable_precomputation=False,
        )
        self.assertIsInstance(preprocessor, InMemoryDistributedDataPreprocessor)

        preprocessor = initialize_preprocessor(
            self.rank,
            self.world_size,
            self.num_items,
            self.processor_fn,
            self.save_dir.name,
            enable_precomputation=True,
        )
        self.assertIsInstance(preprocessor, PrecomputedDistributedDataPreprocessor)

    def test_in_memory_preprocessor_consume(self):
        data_iterator = iter(self.dataset)
        preprocessor = initialize_preprocessor(
            self.rank,
            self.world_size,
            self.num_items,
            self.processor_fn,
            self.save_dir.name,
            enable_precomputation=False,
        )

        condition_iterator = preprocessor.consume(
            "condition", components={}, data_iterator=data_iterator, cache_samples=True
        )
        latent_iterator = preprocessor.consume(
            "latent", components={}, data_iterator=data_iterator, use_cached_samples=True, drop_samples=True
        )

        self.assertFalse(preprocessor.requires_data)
        for _ in range(self.num_items):
            condition_item = next(condition_iterator)
            latent_item = next(latent_iterator)
            self.assertIn("caption", condition_item)
            self.assertIn("video", latent_item)
            self.assertEqual(condition_item["caption"], "a cat ruling the world surrounded by mystical aura")
            self.assertEqual(latent_item["video"].shape[-2:], (16, 16))
        self.assertTrue(preprocessor.requires_data)

    def test_in_memory_preprocessor_consume_once(self):
        data_iterator = iter(self.dataset)
        preprocessor = initialize_preprocessor(
            self.rank,
            self.world_size,
            self.num_items,
            self.processor_fn,
            self.save_dir.name,
            enable_precomputation=False,
        )

        condition_iterator = preprocessor.consume_once(
            "condition", components={}, data_iterator=data_iterator, cache_samples=True
        )
        latent_iterator = preprocessor.consume_once(
            "latent", components={}, data_iterator=data_iterator, use_cached_samples=True, drop_samples=True
        )

        self.assertFalse(preprocessor.requires_data)
        for _ in range(self.num_items):
            condition_item = next(condition_iterator)
            latent_item = next(latent_iterator)
            self.assertIn("caption", condition_item)
            self.assertIn("video", latent_item)
            self.assertEqual(condition_item["caption"], "a cat ruling the world surrounded by mystical aura")
            self.assertEqual(latent_item["video"].shape[-2:], (16, 16))
        self.assertFalse(preprocessor.requires_data)

    def test_precomputed_preprocessor_consume(self):
        data_iterator = iter(self.dataset)
        preprocessor = initialize_preprocessor(
            self.rank,
            self.world_size,
            self.num_items,
            self.processor_fn,
            self.save_dir.name,
            enable_precomputation=True,
        )

        condition_iterator = preprocessor.consume(
            "condition", components={}, data_iterator=data_iterator, cache_samples=True
        )
        latent_iterator = preprocessor.consume(
            "latent", components={}, data_iterator=data_iterator, use_cached_samples=True, drop_samples=True
        )

        precomputed_data_dir = os.path.join(self.save_dir.name, PRECOMPUTED_DATA_DIR)
        condition_file_list = find_files(precomputed_data_dir, "condition-*")
        latent_file_list = find_files(precomputed_data_dir, "latent-*")
        self.assertEqual(len(condition_file_list), 3)
        self.assertEqual(len(latent_file_list), 3)

        self.assertFalse(preprocessor.requires_data)
        for _ in range(self.num_items):
            condition_item = next(condition_iterator)
            latent_item = next(latent_iterator)
            self.assertIn("caption", condition_item)
            self.assertIn("video", latent_item)
            self.assertEqual(condition_item["caption"], "a cat ruling the world surrounded by mystical aura")
            self.assertEqual(latent_item["video"].shape[-2:], (16, 16))
        self.assertTrue(preprocessor.requires_data)

    def test_precomputed_preprocessor_consume_once(self):
        data_iterator = iter(self.dataset)
        preprocessor = initialize_preprocessor(
            self.rank,
            self.world_size,
            self.num_items,
            self.processor_fn,
            self.save_dir.name,
            enable_precomputation=True,
        )

        condition_iterator = preprocessor.consume_once(
            "condition", components={}, data_iterator=data_iterator, cache_samples=True
        )
        latent_iterator = preprocessor.consume_once(
            "latent", components={}, data_iterator=data_iterator, use_cached_samples=True, drop_samples=True
        )

        precomputed_data_dir = os.path.join(self.save_dir.name, PRECOMPUTED_DATA_DIR)
        condition_file_list = find_files(precomputed_data_dir, "condition-*")
        latent_file_list = find_files(precomputed_data_dir, "latent-*")
        self.assertEqual(len(condition_file_list), 3)
        self.assertEqual(len(latent_file_list), 3)

        self.assertFalse(preprocessor.requires_data)
        for _ in range(self.num_items):
            condition_item = next(condition_iterator)
            latent_item = next(latent_iterator)
            self.assertIn("caption", condition_item)
            self.assertIn("video", latent_item)
            self.assertEqual(condition_item["caption"], "a cat ruling the world surrounded by mystical aura")
            self.assertEqual(latent_item["video"].shape[-2:], (16, 16))
        self.assertFalse(preprocessor.requires_data)