Spaces:
Running
Running
File size: 14,878 Bytes
9fd1204 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
import os
import random
import unittest
import numpy as np
import torch
from torch.nn.functional import scaled_dot_product_attention
from finetrainers.models.attention_dispatch import (
AttentionProvider,
_AttentionProviderRegistry,
_set_context_parallel_options,
attention_dispatch,
attention_provider,
flash_attn_flash_attention,
native_cudnn_attention,
native_efficient_attention,
native_flash_attention,
)
from finetrainers.parallel.ptd import _EquipartitionSharder
def set_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
def get_world_size():
if torch.distributed.is_initialized():
return torch.distributed.get_world_size()
return int(os.environ.get("WORLD_SIZE", 1))
class AttentionDispatchTest(unittest.TestCase):
@classmethod
def setUpClass(cls):
set_seed(0)
def test_forward(self):
if not torch.cuda.is_available():
self.skipTest("CUDA is not available")
cuda_capability = torch.cuda.get_device_capability()
query, key, value = self._create_dummy_inputs()
all_providers = [
(AttentionProvider._NATIVE_MATH, 0),
(AttentionProvider.NATIVE, 5e-3),
(AttentionProvider.FLASH, 5e-3),
(AttentionProvider.FLASH_VARLEN, 5e-3),
(AttentionProvider.FLEX, 2e-2),
(AttentionProvider._NATIVE_CUDNN, 5e-3),
(AttentionProvider._NATIVE_EFFICIENT, 5e-3),
(AttentionProvider._NATIVE_FLASH, 5e-3),
(AttentionProvider.SAGE, 1e-1),
(AttentionProvider.SAGE_VARLEN, 2e-0),
(AttentionProvider._SAGE_QK_INT8_PV_FP16_CUDA, 2e-0), # TODO: look into the high difference threshold
(AttentionProvider._SAGE_QK_INT8_PV_FP16_TRITON, 2e-0),
(AttentionProvider.XFORMERS, 5e-3),
]
if cuda_capability >= (8, 9):
all_providers.append((AttentionProvider._SAGE_QK_INT8_PV_FP8_CUDA, 2e-0))
if cuda_capability >= (9, 0):
all_providers.append((AttentionProvider._SAGE_QK_INT8_PV_FP16_CUDA_SM90, 2e-0))
ref_output = None
for i, (provider, threshold) in enumerate(all_providers):
try:
output = self._check_forward_pass(provider, query, key, value)
if i == 0:
ref_output = output.detach().clone()
else:
self.assertTrue(
torch.allclose(output, ref_output, atol=threshold), f"Forward pass mismatch for {provider}"
)
except Exception as e:
print(f"Warning: Forward pass test failed for {provider} with error: {e}")
def test_backward(self):
if not torch.cuda.is_available():
self.skipTest("CUDA is not available")
query, key, value = self._create_dummy_inputs()
selected_providers = [
AttentionProvider.FLASH,
AttentionProvider.FLASH_VARLEN,
AttentionProvider.FLEX,
AttentionProvider.NATIVE,
AttentionProvider.XFORMERS,
]
ref_output = None
for i, provider in enumerate(selected_providers):
try:
output = self._check_backward_pass(provider, query, key, value)
if i == 0:
ref_output = output.detach().clone()
else:
if provider == AttentionProvider.FLEX:
threshold = 1e-2
else:
threshold = 1e-3
self.assertTrue(
torch.allclose(output, ref_output, atol=threshold), f"Backward pass mismatch for {provider}"
)
except Exception as e:
print(f"Warning: Backward pass test failed for {provider} with error: {e}")
def _create_dummy_inputs(
self, batch_size=2, num_heads=8, seq_len=256, head_dim=64, dtype=torch.bfloat16, device="cuda"
):
torch.manual_seed(0)
query = torch.randn(batch_size, num_heads, seq_len, head_dim, dtype=dtype, device=device)
key = torch.randn(batch_size, num_heads, seq_len, head_dim, dtype=dtype, device=device)
value = torch.randn(batch_size, num_heads, seq_len, head_dim, dtype=dtype, device=device)
return query, key, value
def _check_forward_pass(self, provider: AttentionProvider, query, key, value):
kwargs = {}
if provider == AttentionProvider._SAGE_QK_INT8_PV_FP16_CUDA:
kwargs["pv_accum_dtype"] = "fp32"
with attention_provider(provider):
output = attention_dispatch(query, key, value, attention_kwargs=kwargs)
self.assertIsNotNone(output)
self.assertEqual(output.shape, query.shape)
return output
def _check_backward_pass(self, provider: AttentionProvider, query, key, value):
query.requires_grad_(True)
key.requires_grad_(True)
value.requires_grad_(True)
with attention_provider(provider):
output = attention_dispatch(query, key, value)
loss = output.mean()
loss.backward()
self.assertTrue(query.grad is not None)
self.assertTrue(key.grad is not None)
self.assertTrue(value.grad is not None)
query.grad.zero_()
key.grad.zero_()
value.grad.zero_()
return output
class RingAttentionTest(unittest.TestCase):
@classmethod
def setUpClass(cls):
torch.distributed.init_process_group(backend="nccl")
rank, world_size = torch.distributed.get_rank(), torch.distributed.get_world_size()
cls.rank = rank
cls.world_size = world_size
torch.cuda.set_device(rank)
cls.mesh = torch.distributed.device_mesh.init_device_mesh("cuda", (world_size,))
set_seed(0)
cls.batch_size = 2
cls.num_heads = 8
cls.seq_len = 256
cls.head_dim = 64
cls.dtype = torch.bfloat16
cls.device = "cuda"
_AttentionProviderRegistry._set_context_parallel(
mesh=cls.mesh, convert_to_fp32=True, rotate_method="allgather"
)
_set_context_parallel_options(is_causal=False)
cls.full_query = torch.randn(
cls.batch_size,
cls.num_heads,
cls.seq_len * cls.world_size,
cls.head_dim,
dtype=cls.dtype,
device=cls.device,
requires_grad=True,
)
cls.full_key = torch.randn(
cls.batch_size,
cls.num_heads,
cls.seq_len * cls.world_size,
cls.head_dim,
dtype=cls.dtype,
device=cls.device,
requires_grad=True,
)
cls.full_value = torch.randn(
cls.batch_size,
cls.num_heads,
cls.seq_len * cls.world_size,
cls.head_dim,
dtype=cls.dtype,
device=cls.device,
requires_grad=True,
)
# Ensure all ranks have the same data
with torch.no_grad():
torch.distributed.broadcast(cls.full_query, src=0)
torch.distributed.broadcast(cls.full_key, src=0)
torch.distributed.broadcast(cls.full_value, src=0)
with torch.nn.attention.sdpa_kernel(torch.nn.attention.SDPBackend.MATH):
reference_output = scaled_dot_product_attention(cls.full_query, cls.full_key, cls.full_value)
cls.reference_output = reference_output.detach().clone()
reference_output.sum().backward()
cls.query, cls.key, cls.value = (
_EquipartitionSharder.shard(x, dim=2, mesh=cls.mesh).detach().clone()
for x in (cls.full_query, cls.full_key, cls.full_value)
)
@classmethod
def tearDownClass(cls):
torch.distributed.destroy_process_group()
def _test_forward_native_cudnn_attention(self, atol: float = 1e-3):
output = native_cudnn_attention(self.query, self.key, self.value)
output = _EquipartitionSharder.unshard(output, dim=2, mesh=self.mesh)
self.assertEqual(output.shape, self.reference_output.shape)
self.assertTrue(torch.allclose(output, self.reference_output, atol=atol))
def _test_forward_native_efficient_attention(self, atol: float = 1e-3):
output = native_efficient_attention(self.query, self.key, self.value)
output = _EquipartitionSharder.unshard(output, dim=2, mesh=self.mesh)
self.assertEqual(output.shape, self.reference_output.shape)
self.assertTrue(torch.allclose(output, self.reference_output, atol=atol))
def _test_forward_native_flash_attention(self, atol: float = 1e-3):
output = native_flash_attention(self.query, self.key, self.value)
output = _EquipartitionSharder.unshard(output, dim=2, mesh=self.mesh)
self.assertEqual(output.shape, self.reference_output.shape)
self.assertTrue(torch.allclose(output, self.reference_output, atol=atol))
def _test_forward_flash_attn_flash_attention(self, atol: float = 1e-3):
output = flash_attn_flash_attention(self.query, self.key, self.value)
output = _EquipartitionSharder.unshard(output, dim=2, mesh=self.mesh)
self.assertEqual(output.shape, self.reference_output.shape)
self.assertTrue(torch.allclose(output, self.reference_output, atol=atol))
def _test_backward_native_cudnn_attention(self, atol: float = 1e-3):
query, key, value = (x.detach().clone() for x in (self.query, self.key, self.value))
query.requires_grad = True
key.requires_grad = True
value.requires_grad = True
output = native_cudnn_attention(query, key, value)
output = _EquipartitionSharder.unshard(output, dim=2, mesh=self.mesh)
output.sum().backward()
with torch.no_grad():
q_g, k_g, v_g = (
_EquipartitionSharder.shard(x, dim=2, mesh=self.mesh)
for x in (self.full_query.grad, self.full_key.grad, self.full_value.grad)
)
self.assertTrue(torch.allclose(query.grad, q_g, atol=atol))
self.assertTrue(torch.allclose(key.grad, k_g, atol=atol))
self.assertTrue(torch.allclose(value.grad, v_g, atol=atol))
def _test_backward_native_efficient_attention(self, atol: float = 1e-3):
query, key, value = (x.detach().clone() for x in (self.query, self.key, self.value))
query.requires_grad = True
key.requires_grad = True
value.requires_grad = True
output = native_efficient_attention(query, key, value)
output = _EquipartitionSharder.unshard(output, dim=2, mesh=self.mesh)
output.sum().backward()
with torch.no_grad():
q_g, k_g, v_g = (
_EquipartitionSharder.shard(x, dim=2, mesh=self.mesh)
for x in (self.full_query.grad, self.full_key.grad, self.full_value.grad)
)
self.assertTrue(torch.allclose(query.grad, q_g, atol=atol))
self.assertTrue(torch.allclose(key.grad, k_g, atol=atol))
self.assertTrue(torch.allclose(value.grad, v_g, atol=atol))
def _test_backward_native_flash_attention(self, atol: float = 1e-3):
query, key, value = (x.detach().clone() for x in (self.query, self.key, self.value))
query.requires_grad = True
key.requires_grad = True
value.requires_grad = True
output = native_flash_attention(query, key, value)
output = _EquipartitionSharder.unshard(output, dim=2, mesh=self.mesh)
output.sum().backward()
with torch.no_grad():
q_g, k_g, v_g = (
_EquipartitionSharder.shard(x, dim=2, mesh=self.mesh)
for x in (self.full_query.grad, self.full_key.grad, self.full_value.grad)
)
self.assertTrue(torch.allclose(query.grad, q_g, atol=atol))
self.assertTrue(torch.allclose(key.grad, k_g, atol=atol))
self.assertTrue(torch.allclose(value.grad, v_g, atol=atol))
def _test_backward_flash_attn_flash_attention(self, atol: float = 1e-3):
query, key, value = (x.detach().clone() for x in (self.query, self.key, self.value))
query.requires_grad = True
key.requires_grad = True
value.requires_grad = True
output = flash_attn_flash_attention(query, key, value)
output = _EquipartitionSharder.unshard(output, dim=2, mesh=self.mesh)
output.sum().backward()
with torch.no_grad():
q_g, k_g, v_g = (
_EquipartitionSharder.shard(x, dim=2, mesh=self.mesh)
for x in (self.full_query.grad, self.full_key.grad, self.full_value.grad)
)
self.assertTrue(torch.allclose(query.grad, q_g, atol=atol))
self.assertTrue(torch.allclose(key.grad, k_g, atol=atol))
self.assertTrue(torch.allclose(value.grad, v_g, atol=atol))
class RingAttentionCPTesterMixin:
def test_forward_native_cudnn_attention(self):
self._test_forward_native_cudnn_attention(atol=1e-2)
def test_forward_native_efficient_attention(self):
self._test_forward_native_efficient_attention(atol=1e-2)
def test_forward_native_flash_attention(self):
self._test_forward_native_flash_attention(atol=1e-2)
def test_forward_flash_attn_flash_attention(self):
self._test_forward_flash_attn_flash_attention(atol=1e-2)
def test_backward_native_cudnn_attention(self):
atol = 1e-2 * self.world_size # TODO: make bounds more strict
self._test_backward_native_cudnn_attention(atol=atol)
def test_backward_native_efficient_attention(self):
atol = 1e-2 * self.world_size # TODO: make bounds more strict
self._test_backward_native_efficient_attention(atol=atol)
def test_backward_native_flash_attention(self):
atol = 1e-2 * self.world_size # TODO: make bounds more strict
self._test_backward_native_flash_attention(atol=atol)
@unittest.skip(
"""query diff: 0.298828125, key diff: 2.09375, value diff: 0.68359375; Needs further investigation"""
)
def test_backward_flash_attn_flash_attention(self):
# Seems to require much higher bound for some reason
atol = 1.5e-1 * self.world_size # TODO: make bounds more strict
self._test_backward_flash_attn_flash_attention(atol=atol)
@unittest.skipIf(
not torch.cuda.is_available() or get_world_size() != 2, "CUDA is not available or world size is not 2"
)
class RingAttentionCP2Test(RingAttentionTest, RingAttentionCPTesterMixin):
pass
@unittest.skipIf(
not torch.cuda.is_available() or get_world_size() != 4, "CUDA is not available or world size is not 4"
)
class RingAttentionCP4Test(RingAttentionTest, RingAttentionCPTesterMixin):
pass
|