File size: 9,185 Bytes
9fd1204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import copy

import torch
import torch.distributed as dist
from diffusers import LTXVideoTransformer3DModel
from torch._utils import _get_device_module
from torch.distributed.tensor import DTensor, Replicate
from torch.distributed.tensor.debug import CommDebugMode
from torch.distributed.tensor.device_mesh import DeviceMesh
from torch.distributed.tensor.parallel.api import parallelize_module
from torch.distributed.tensor.parallel.style import (
    ColwiseParallel,
    RowwiseParallel,
)


# from torch.utils._python_dispatch import TorchDispatchMode


DEVICE_TYPE = "cuda"
PG_BACKEND = "nccl"
DEVICE_COUNT = _get_device_module(DEVICE_TYPE).device_count()


def main(world_size: int, rank: int):
    torch.cuda.empty_cache()
    torch.cuda.reset_peak_memory_stats(rank)

    CHANNELS = 128
    CROSS_ATTENTION_DIM = 2048
    CAPTION_CHANNELS = 4096
    NUM_LAYERS = 28
    NUM_ATTENTION_HEADS = 32
    ATTENTION_HEAD_DIM = 64

    # CHANNELS = 4
    # CROSS_ATTENTION_DIM = 32
    # CAPTION_CHANNELS = 64
    # NUM_LAYERS = 1
    # NUM_ATTENTION_HEADS = 4
    # ATTENTION_HEAD_DIM = 8

    config = {
        "in_channels": CHANNELS,
        "out_channels": CHANNELS,
        "patch_size": 1,
        "patch_size_t": 1,
        "num_attention_heads": NUM_ATTENTION_HEADS,
        "attention_head_dim": ATTENTION_HEAD_DIM,
        "cross_attention_dim": CROSS_ATTENTION_DIM,
        "num_layers": NUM_LAYERS,
        "activation_fn": "gelu-approximate",
        "qk_norm": "rms_norm_across_heads",
        "norm_elementwise_affine": False,
        "norm_eps": 1e-6,
        "caption_channels": CAPTION_CHANNELS,
        "attention_bias": True,
        "attention_out_bias": True,
    }

    # Normal model
    torch.manual_seed(0)
    model = LTXVideoTransformer3DModel(**config).to(DEVICE_TYPE)

    # TP model
    model_tp = copy.deepcopy(model)
    device_mesh = DeviceMesh(DEVICE_TYPE, torch.arange(world_size))
    print(f"Device mesh: {device_mesh}")

    transformer_tp_plan = {
        # ===== Condition embeddings =====
        # "time_embed.emb.timestep_embedder.linear_1": ColwiseParallel(),
        # "time_embed.emb.timestep_embedder.linear_2": RowwiseParallel(output_layouts=Shard(-1)),
        # "time_embed.linear": ColwiseParallel(input_layouts=Shard(-1), output_layouts=Replicate()),
        # "time_embed": PrepareModuleOutput(output_layouts=(Replicate(), Shard(-1)), desired_output_layouts=(Replicate(), Replicate())),
        # "caption_projection.linear_1": ColwiseParallel(),
        # "caption_projection.linear_2": RowwiseParallel(),
        # "rope": PrepareModuleOutput(output_layouts=(Replicate(), Replicate()), desired_output_layouts=(Shard(1), Shard(1)), use_local_output=False),
        # ===== =====
    }

    for block in model_tp.transformer_blocks:
        block_tp_plan = {}

        # ===== Attention =====
        # 8 all-to-all, 3 all-reduce
        # block_tp_plan["attn1.to_q"] = ColwiseParallel(use_local_output=False)
        # block_tp_plan["attn1.to_k"] = ColwiseParallel(use_local_output=False)
        # block_tp_plan["attn1.to_v"] = ColwiseParallel(use_local_output=False)
        # block_tp_plan["attn1.norm_q"] = SequenceParallel()
        # block_tp_plan["attn1.norm_k"] = SequenceParallel()
        # block_tp_plan["attn1.to_out.0"] = RowwiseParallel(input_layouts=Shard(1))
        # block_tp_plan["attn2.to_q"] = ColwiseParallel(use_local_output=False)
        # block_tp_plan["attn2.to_k"] = ColwiseParallel(use_local_output=False)
        # block_tp_plan["attn2.to_v"] = ColwiseParallel(use_local_output=False)
        # block_tp_plan["attn2.norm_q"] = SequenceParallel()
        # block_tp_plan["attn2.norm_k"] = SequenceParallel()
        # block_tp_plan["attn2.to_out.0"] = RowwiseParallel(input_layouts=Shard(1))
        # ===== =====

        block_tp_plan["ff.net.0.proj"] = ColwiseParallel()
        block_tp_plan["ff.net.2"] = RowwiseParallel()
        parallelize_module(block, device_mesh, block_tp_plan)

    parallelize_module(model_tp, device_mesh, transformer_tp_plan)

    comm_mode = CommDebugMode()

    batch_size = 2
    num_frames, height, width = 49, 512, 512
    temporal_compression_ratio, spatial_compression_ratio = 8, 32
    latent_num_frames, latent_height, latent_width = (
        (num_frames - 1) // temporal_compression_ratio + 1,
        height // spatial_compression_ratio,
        width // spatial_compression_ratio,
    )
    video_sequence_length = latent_num_frames * latent_height * latent_width
    caption_sequence_length = 64

    hidden_states = torch.randn(batch_size, video_sequence_length, CHANNELS, device=DEVICE_TYPE)
    encoder_hidden_states = torch.randn(batch_size, caption_sequence_length, CAPTION_CHANNELS, device=DEVICE_TYPE)
    encoder_attention_mask = None
    timestep = torch.randint(0, 1000, (batch_size, 1), device=DEVICE_TYPE)
    inputs = {
        "hidden_states": hidden_states,
        "encoder_hidden_states": encoder_hidden_states,
        "encoder_attention_mask": encoder_attention_mask,
        "timestep": timestep,
        "num_frames": latent_num_frames,
        "height": latent_height,
        "width": latent_width,
        "rope_interpolation_scale": [1 / (8 / 25), 8, 8],
        "return_dict": False,
    }

    output = model(**inputs)[0]

    with comm_mode:
        output_tp = model_tp(**inputs)[0]

    output_tp = (
        output_tp.redistribute(output_tp.device_mesh, [Replicate()]).to_local()
        if isinstance(output_tp, DTensor)
        else output_tp
    )

    print("Output shapes:", output.shape, output_tp.shape)
    print(
        "Comparing output:",
        rank,
        torch.allclose(output, output_tp, atol=1e-5, rtol=1e-5),
        (output - output_tp).abs().max(),
    )
    print(f"Max memory reserved ({rank=}): {torch.cuda.max_memory_reserved(rank) / 1024**3:.2f} GB")

    if rank == 0:
        print()
        print("get_comm_counts:", comm_mode.get_comm_counts())
        # print()
        # print("get_parameter_info:", comm_mode.get_parameter_info())  # Too much noise
        print()
        print("Sharding info:\n" + "".join(f"{k} - {v}\n" for k, v in comm_mode.get_sharding_info().items()))
        print()
        print("get_total_counts:", comm_mode.get_total_counts())
        comm_mode.generate_json_dump("dump_comm_mode_log.json", noise_level=1)
        comm_mode.log_comm_debug_tracing_table_to_file("dump_comm_mode_tracing_table.txt", noise_level=1)


dist.init_process_group(PG_BACKEND)
WORLD_SIZE = dist.get_world_size()
RANK = dist.get_rank()

torch.cuda.set_device(RANK)

if RANK == 0:
    print(f"World size: {WORLD_SIZE}")
    print(f"Device count: {DEVICE_COUNT}")

try:
    with torch.no_grad():
        main(WORLD_SIZE, RANK)
finally:
    dist.destroy_process_group()


# LTXVideoTransformer3DModel(
#   (proj_in): Linear(in_features=128, out_features=2048, bias=True)
#   (time_embed): AdaLayerNormSingle(
#     (emb): PixArtAlphaCombinedTimestepSizeEmbeddings(
#       (time_proj): Timesteps()
#       (timestep_embedder): TimestepEmbedding(
#         (linear_1): Linear(in_features=256, out_features=2048, bias=True)
#         (act): SiLU()
#         (linear_2): Linear(in_features=2048, out_features=2048, bias=True)
#       )
#     )
#     (silu): SiLU()
#     (linear): Linear(in_features=2048, out_features=12288, bias=True)
#   )
#   (caption_projection): PixArtAlphaTextProjection(
#     (linear_1): Linear(in_features=4096, out_features=2048, bias=True)
#     (act_1): GELU(approximate='tanh')
#     (linear_2): Linear(in_features=2048, out_features=2048, bias=True)
#   )
#   (rope): LTXVideoRotaryPosEmbed()
#   (transformer_blocks): ModuleList(
#     (0-27): 28 x LTXVideoTransformerBlock(
#       (norm1): RMSNorm()
#       (attn1): Attention(
#         (norm_q): RMSNorm()
#         (norm_k): RMSNorm()
#         (to_q): Linear(in_features=2048, out_features=2048, bias=True)
#         (to_k): Linear(in_features=2048, out_features=2048, bias=True)
#         (to_v): Linear(in_features=2048, out_features=2048, bias=True)
#         (to_out): ModuleList(
#           (0): Linear(in_features=2048, out_features=2048, bias=True)
#           (1): Dropout(p=0.0, inplace=False)
#         )
#       )
#       (norm2): RMSNorm()
#       (attn2): Attention(
#         (norm_q): RMSNorm()
#         (norm_k): RMSNorm()
#         (to_q): Linear(in_features=2048, out_features=2048, bias=True)
#         (to_k): Linear(in_features=2048, out_features=2048, bias=True)
#         (to_v): Linear(in_features=2048, out_features=2048, bias=True)
#         (to_out): ModuleList(
#           (0): Linear(in_features=2048, out_features=2048, bias=True)
#           (1): Dropout(p=0.0, inplace=False)
#         )
#       )
#       (ff): FeedForward(
#         (net): ModuleList(
#           (0): GELU(
#             (proj): Linear(in_features=2048, out_features=8192, bias=True)
#           )
#           (1): Dropout(p=0.0, inplace=False)
#           (2): Linear(in_features=8192, out_features=2048, bias=True)
#         )
#       )
#     )
#   )
#   (norm_out): LayerNorm((2048,), eps=1e-06, elementwise_affine=False)
#   (proj_out): Linear(in_features=2048, out_features=128, bias=True)
# )