jbilcke-hf's picture
jbilcke-hf HF Staff
we are going to hack into finetrainers
9fd1204
raw
history blame
43.9 kB
import pathlib
import random
from typing import Any, Dict, List, Optional, Tuple, Union
import datasets
import datasets.data_files
import datasets.distributed
import datasets.exceptions
import huggingface_hub
import huggingface_hub.errors
import numpy as np
import PIL.Image
import PIL.JpegImagePlugin
import torch
import torch.distributed.checkpoint.stateful
import torchvision
from diffusers.utils import load_image, load_video
from huggingface_hub import list_repo_files, repo_exists, snapshot_download
from tqdm.auto import tqdm
from finetrainers import constants
from finetrainers import functional as FF
from finetrainers.logging import get_logger
from finetrainers.utils import find_files
from finetrainers.utils.import_utils import is_datasets_version
import decord # isort:skip
decord.bridge.set_bridge("torch")
logger = get_logger()
# fmt: off
MAX_PRECOMPUTABLE_ITEMS_LIMIT = 1024
COMMON_CAPTION_FILES = ["prompt.txt", "prompts.txt", "caption.txt", "captions.txt"]
COMMON_VIDEO_FILES = ["video.txt", "videos.txt"]
COMMON_IMAGE_FILES = ["image.txt", "images.txt"]
COMMON_WDS_CAPTION_COLUMN_NAMES = ["txt", "text", "caption", "captions", "short_caption", "long_caption", "prompt", "prompts", "short_prompt", "long_prompt", "description", "descriptions", "alt_text", "alt_texts", "alt_caption", "alt_captions", "alt_prompt", "alt_prompts", "alt_description", "alt_descriptions", "image_description", "image_descriptions", "image_caption", "image_captions", "image_prompt", "image_prompts", "image_alt_text", "image_alt_texts", "image_alt_caption", "image_alt_captions", "image_alt_prompt", "image_alt_prompts", "image_alt_description", "image_alt_descriptions", "video_description", "video_descriptions", "video_caption", "video_captions", "video_prompt", "video_prompts", "video_alt_text", "video_alt_texts", "video_alt_caption", "video_alt_captions", "video_alt_prompt", "video_alt_prompts", "video_alt_description"]
# fmt: on
class ImageCaptionFilePairDataset(torch.utils.data.IterableDataset, torch.distributed.checkpoint.stateful.Stateful):
def __init__(self, root: str, infinite: bool = False) -> None:
super().__init__()
self.root = pathlib.Path(root)
self.infinite = infinite
data = []
caption_files = sorted(find_files(self.root.as_posix(), "*.txt", depth=0))
for caption_file in caption_files:
data_file = self._find_data_file(caption_file)
if data_file:
data.append(
{
"caption": (self.root / caption_file).as_posix(),
"image": (self.root / data_file).as_posix(),
}
)
data = datasets.Dataset.from_list(data)
data = data.cast_column("image", datasets.Image(mode="RGB"))
self._data = data.to_iterable_dataset()
self._sample_index = 0
self._precomputable_once = len(data) <= MAX_PRECOMPUTABLE_ITEMS_LIMIT
def _get_data_iter(self):
if self._sample_index == 0:
return iter(self._data)
return iter(self._data.skip(self._sample_index))
def __iter__(self):
while True:
for sample in self._get_data_iter():
self._sample_index += 1
sample["caption"] = _read_caption_from_file(sample["caption"])
yield sample
if not self.infinite:
logger.warning(f"Dataset ({self.__class__.__name__}={self.root}) has run out of data")
break
else:
self._sample_index = 0
def load_state_dict(self, state_dict):
self._sample_index = state_dict["sample_index"]
def state_dict(self):
return {"sample_index": self._sample_index}
def _find_data_file(self, caption_file: str) -> str:
caption_file = pathlib.Path(caption_file)
data_file = None
found_data = 0
for extension in constants.SUPPORTED_IMAGE_FILE_EXTENSIONS:
image_filename = caption_file.with_suffix(f".{extension}")
if image_filename.exists():
found_data += 1
data_file = image_filename
if found_data == 0:
return False
elif found_data > 1:
raise ValueError(
f"Multiple data files found for caption file {caption_file}. Please ensure there is only one data "
f"file per caption file. The following extensions are supported:\n"
f" - Images: {constants.SUPPORTED_IMAGE_FILE_EXTENSIONS}\n"
)
return data_file.as_posix()
class VideoCaptionFilePairDataset(torch.utils.data.IterableDataset, torch.distributed.checkpoint.stateful.Stateful):
def __init__(self, root: str, infinite: bool = False) -> None:
super().__init__()
self.root = pathlib.Path(root)
self.infinite = infinite
data = []
caption_files = sorted(find_files(self.root.as_posix(), "*.txt", depth=0))
for caption_file in caption_files:
data_file = self._find_data_file(caption_file)
if data_file:
data.append(
{
"caption": (self.root / caption_file).as_posix(),
"video": (self.root / data_file).as_posix(),
}
)
data = datasets.Dataset.from_list(data)
data = data.cast_column("video", datasets.Video())
self._data = data.to_iterable_dataset()
self._sample_index = 0
self._precomputable_once = len(data) <= MAX_PRECOMPUTABLE_ITEMS_LIMIT
def _get_data_iter(self):
if self._sample_index == 0:
return iter(self._data)
return iter(self._data.skip(self._sample_index))
def __iter__(self):
while True:
for sample in self._get_data_iter():
self._sample_index += 1
sample["caption"] = _read_caption_from_file(sample["caption"])
yield sample
if not self.infinite:
logger.warning(f"Dataset ({self.__class__.__name__}={self.root}) has run out of data")
break
else:
self._sample_index = 0
def load_state_dict(self, state_dict):
self._sample_index = state_dict["sample_index"]
def state_dict(self):
return {"sample_index": self._sample_index}
def _find_data_file(self, caption_file: str) -> str:
caption_file = pathlib.Path(caption_file)
data_file = None
found_data = 0
for extension in constants.SUPPORTED_VIDEO_FILE_EXTENSIONS:
video_filename = caption_file.with_suffix(f".{extension}")
if video_filename.exists():
found_data += 1
data_file = video_filename
if found_data == 0:
return False
elif found_data > 1:
raise ValueError(
f"Multiple data files found for caption file {caption_file}. Please ensure there is only one data "
f"file per caption file. The following extensions are supported:\n"
f" - Videos: {constants.SUPPORTED_VIDEO_FILE_EXTENSIONS}\n"
)
return data_file.as_posix()
class ImageFileCaptionFileListDataset(
torch.utils.data.IterableDataset, torch.distributed.checkpoint.stateful.Stateful
):
def __init__(self, root: str, infinite: bool = False) -> None:
super().__init__()
VALID_CAPTION_FILES = ["caption.txt", "captions.txt", "prompt.txt", "prompts.txt"]
VALID_IMAGE_FILES = ["image.txt", "images.txt"]
self.root = pathlib.Path(root)
self.infinite = infinite
data = []
existing_caption_files = [file for file in VALID_CAPTION_FILES if (self.root / file).exists()]
existing_image_files = [file for file in VALID_IMAGE_FILES if (self.root / file).exists()]
if len(existing_caption_files) == 0:
raise FileNotFoundError(
f"No caption file found in {self.root}. Must have exactly one of {VALID_CAPTION_FILES}"
)
if len(existing_image_files) == 0:
raise FileNotFoundError(
f"No image file found in {self.root}. Must have exactly one of {VALID_IMAGE_FILES}"
)
if len(existing_caption_files) > 1:
raise ValueError(
f"Multiple caption files found in {self.root}. Must have exactly one of {VALID_CAPTION_FILES}"
)
if len(existing_image_files) > 1:
raise ValueError(
f"Multiple image files found in {self.root}. Must have exactly one of {VALID_IMAGE_FILES}"
)
caption_file = existing_caption_files[0]
image_file = existing_image_files[0]
with open((self.root / caption_file).as_posix(), "r") as f:
captions = f.read().splitlines()
with open((self.root / image_file).as_posix(), "r") as f:
images = f.read().splitlines()
images = [(self.root / image).as_posix() for image in images]
if len(captions) != len(images):
raise ValueError(f"Number of captions ({len(captions)}) must match number of images ({len(images)})")
for caption, image in zip(captions, images):
data.append({"caption": caption, "image": image})
data = datasets.Dataset.from_list(data)
data = data.cast_column("image", datasets.Image(mode="RGB"))
self._data = data.to_iterable_dataset()
self._sample_index = 0
self._precomputable_once = len(data) <= MAX_PRECOMPUTABLE_ITEMS_LIMIT
def _get_data_iter(self):
if self._sample_index == 0:
return iter(self._data)
return iter(self._data.skip(self._sample_index))
def __iter__(self):
while True:
for sample in self._get_data_iter():
self._sample_index += 1
yield sample
if not self.infinite:
logger.warning(f"Dataset ({self.__class__.__name__}={self.root}) has run out of data")
break
else:
self._sample_index = 0
def load_state_dict(self, state_dict):
self._sample_index = state_dict["sample_index"]
def state_dict(self):
return {"sample_index": self._sample_index}
class VideoFileCaptionFileListDataset(
torch.utils.data.IterableDataset, torch.distributed.checkpoint.stateful.Stateful
):
def __init__(self, root: str, infinite: bool = False) -> None:
super().__init__()
VALID_CAPTION_FILES = ["caption.txt", "captions.txt", "prompt.txt", "prompts.txt"]
VALID_VIDEO_FILES = ["video.txt", "videos.txt"]
self.root = pathlib.Path(root)
self.infinite = infinite
data = []
existing_caption_files = [file for file in VALID_CAPTION_FILES if (self.root / file).exists()]
existing_video_files = [file for file in VALID_VIDEO_FILES if (self.root / file).exists()]
if len(existing_caption_files) == 0:
raise FileNotFoundError(
f"No caption file found in {self.root}. Must have exactly one of {VALID_CAPTION_FILES}"
)
if len(existing_video_files) == 0:
raise FileNotFoundError(
f"No video file found in {self.root}. Must have exactly one of {VALID_VIDEO_FILES}"
)
if len(existing_caption_files) > 1:
raise ValueError(
f"Multiple caption files found in {self.root}. Must have exactly one of {VALID_CAPTION_FILES}"
)
if len(existing_video_files) > 1:
raise ValueError(
f"Multiple video files found in {self.root}. Must have exactly one of {VALID_VIDEO_FILES}"
)
caption_file = existing_caption_files[0]
video_file = existing_video_files[0]
with open((self.root / caption_file).as_posix(), "r") as f:
captions = f.read().splitlines()
with open((self.root / video_file).as_posix(), "r") as f:
videos = f.read().splitlines()
videos = [(self.root / video).as_posix() for video in videos]
if len(captions) != len(videos):
raise ValueError(f"Number of captions ({len(captions)}) must match number of videos ({len(videos)})")
for caption, video in zip(captions, videos):
data.append({"caption": caption, "video": video})
data = datasets.Dataset.from_list(data)
data = data.cast_column("video", datasets.Video())
self._data = data.to_iterable_dataset()
self._sample_index = 0
self._precomputable_once = len(data) <= MAX_PRECOMPUTABLE_ITEMS_LIMIT
def _get_data_iter(self):
if self._sample_index == 0:
return iter(self._data)
return iter(self._data.skip(self._sample_index))
def __iter__(self):
while True:
for sample in self._get_data_iter():
self._sample_index += 1
yield sample
if not self.infinite:
logger.warning(f"Dataset ({self.__class__.__name__}={self.root}) has run out of data")
break
else:
self._sample_index = 0
def load_state_dict(self, state_dict):
self._sample_index = state_dict["sample_index"]
def state_dict(self):
return {"sample_index": self._sample_index}
class ImageFolderDataset(torch.utils.data.IterableDataset, torch.distributed.checkpoint.stateful.Stateful):
def __init__(self, root: str, infinite: bool = False) -> None:
super().__init__()
self.root = pathlib.Path(root)
self.infinite = infinite
data = datasets.load_dataset("imagefolder", data_dir=self.root.as_posix(), split="train")
self._data = data.to_iterable_dataset()
self._sample_index = 0
self._precomputable_once = len(data) <= MAX_PRECOMPUTABLE_ITEMS_LIMIT
def _get_data_iter(self):
if self._sample_index == 0:
return iter(self._data)
return iter(self._data.skip(self._sample_index))
def __iter__(self):
while True:
for sample in self._get_data_iter():
self._sample_index += 1
yield sample
if not self.infinite:
logger.warning(f"Dataset ({self.__class__.__name__}={self.root}) has run out of data")
break
else:
self._sample_index = 0
def load_state_dict(self, state_dict):
self._sample_index = state_dict["sample_index"]
def state_dict(self):
return {"sample_index": self._sample_index}
class VideoFolderDataset(torch.utils.data.IterableDataset, torch.distributed.checkpoint.stateful.Stateful):
def __init__(self, root: str, infinite: bool = False) -> None:
super().__init__()
self.root = pathlib.Path(root)
self.infinite = infinite
data = datasets.load_dataset("videofolder", data_dir=self.root.as_posix(), split="train")
self._data = data.to_iterable_dataset()
self._sample_index = 0
self._precomputable_once = len(data) <= MAX_PRECOMPUTABLE_ITEMS_LIMIT
def _get_data_iter(self):
if self._sample_index == 0:
return iter(self._data)
return iter(self._data.skip(self._sample_index))
def __iter__(self):
while True:
for sample in self._get_data_iter():
self._sample_index += 1
yield sample
if not self.infinite:
logger.warning(f"Dataset ({self.__class__.__name__}={self.root}) has run out of data")
break
else:
self._sample_index = 0
def load_state_dict(self, state_dict):
self._sample_index = state_dict["sample_index"]
def state_dict(self):
return {"sample_index": self._sample_index}
class ImageWebDataset(torch.utils.data.IterableDataset, torch.distributed.checkpoint.stateful.Stateful):
def __init__(
self,
dataset_name: str,
infinite: bool = False,
column_names: Union[str, List[str]] = "__auto__",
weights: Dict[str, float] = -1,
**kwargs,
) -> None:
super().__init__()
assert weights == -1 or isinstance(weights, dict), (
"`weights` must be a dictionary of probabilities for each caption column"
)
self.dataset_name = dataset_name
self.infinite = infinite
data = datasets.load_dataset(dataset_name, split="train", streaming=True)
if column_names == "__auto__":
if weights == -1:
caption_columns = [column for column in data.column_names if column in COMMON_WDS_CAPTION_COLUMN_NAMES]
if len(caption_columns) == 0:
raise ValueError(
f"No common caption column found in the dataset. Supported columns are: {COMMON_WDS_CAPTION_COLUMN_NAMES}. "
f"Available columns are: {data.column_names}"
)
weights = [1] * len(caption_columns)
else:
caption_columns = list(weights.keys())
weights = list(weights.values())
if not all(column in data.column_names for column in caption_columns):
raise ValueError(
f"Caption columns {caption_columns} not found in the dataset. Available columns are: {data.column_names}"
)
else:
if isinstance(column_names, str):
if column_names not in data.column_names:
raise ValueError(
f"Caption column {column_names} not found in the dataset. Available columns are: {data.column_names}"
)
caption_columns = [column_names]
weights = [1] if weights == -1 else [weights.get(column_names)]
elif isinstance(column_names, list):
if not all(column in data.column_names for column in column_names):
raise ValueError(
f"Caption columns {column_names} not found in the dataset. Available columns are: {data.column_names}"
)
caption_columns = column_names
weights = [1] if weights == -1 else [weights.get(column) for column in column_names]
else:
raise ValueError(f"Unsupported type for column_name: {type(column_names)}")
for column_names in constants.SUPPORTED_IMAGE_FILE_EXTENSIONS:
if column_names in data.column_names:
data = data.cast_column(column_names, datasets.Image(mode="RGB"))
data = data.rename_column(column_names, "image")
break
self._data = data
self._sample_index = 0
self._precomputable_once = False
self._caption_columns = caption_columns
self._weights = weights
def _get_data_iter(self):
if self._sample_index == 0:
return iter(self._data)
return iter(self._data.skip(self._sample_index))
def __iter__(self):
while True:
for sample in self._get_data_iter():
self._sample_index += 1
caption_column = random.choices(self._caption_columns, weights=self._weights, k=1)[0]
sample["caption"] = sample[caption_column]
yield sample
if not self.infinite:
logger.warning(f"Dataset {self.dataset_name} has run out of data")
break
else:
# Reset offset for the next iteration
self._sample_index = 0
logger.warning(f"Dataset {self.dataset_name} is being re-looped")
def load_state_dict(self, state_dict):
self._sample_index = state_dict["sample_index"]
def state_dict(self):
return {"sample_index": self._sample_index}
class VideoWebDataset(torch.utils.data.IterableDataset, torch.distributed.checkpoint.stateful.Stateful):
def __init__(
self,
dataset_name: str,
infinite: bool = False,
column_names: Union[str, List[str]] = "__auto__",
weights: Dict[str, float] = -1,
**kwargs,
) -> None:
super().__init__()
assert weights == -1 or isinstance(weights, dict), (
"`weights` must be a dictionary of probabilities for each caption column"
)
self.dataset_name = dataset_name
self.infinite = infinite
data = datasets.load_dataset(dataset_name, split="train", streaming=True)
if column_names == "__auto__":
if weights == -1:
caption_columns = [column for column in data.column_names if column in COMMON_WDS_CAPTION_COLUMN_NAMES]
if len(caption_columns) == 0:
raise ValueError(
f"No common caption column found in the dataset. Supported columns are: {COMMON_WDS_CAPTION_COLUMN_NAMES}"
)
weights = [1] * len(caption_columns)
else:
caption_columns = list(weights.keys())
weights = list(weights.values())
if not all(column in data.column_names for column in caption_columns):
raise ValueError(
f"Caption columns {caption_columns} not found in the dataset. Available columns are: {data.column_names}"
)
else:
if isinstance(column_names, str):
if column_names not in data.column_names:
raise ValueError(
f"Caption column {column_names} not found in the dataset. Available columns are: {data.column_names}"
)
caption_columns = [column_names]
weights = [1] if weights == -1 else [weights.get(column_names)]
elif isinstance(column_names, list):
if not all(column in data.column_names for column in column_names):
raise ValueError(
f"Caption columns {column_names} not found in the dataset. Available columns are: {data.column_names}"
)
caption_columns = column_names
weights = [1] if weights == -1 else [weights.get(column) for column in column_names]
else:
raise ValueError(f"Unsupported type for column_name: {type(column_names)}")
for column_names in constants.SUPPORTED_VIDEO_FILE_EXTENSIONS:
if column_names in data.column_names:
data = data.cast_column(column_names, datasets.Video())
data = data.rename_column(column_names, "video")
break
self._data = data
self._sample_index = 0
self._precomputable_once = False
self._caption_columns = caption_columns
self._weights = weights
def _get_data_iter(self):
if self._sample_index == 0:
return iter(self._data)
return iter(self._data.skip(self._sample_index))
def __iter__(self):
while True:
for sample in self._get_data_iter():
self._sample_index += 1
caption_column = random.choices(self._caption_columns, weights=self._weights, k=1)[0]
sample["caption"] = sample[caption_column]
yield sample
if not self.infinite:
logger.warning(f"Dataset {self.dataset_name} has run out of data")
break
else:
# Reset offset for the next iteration
self._sample_index = 0
logger.warning(f"Dataset {self.dataset_name} is being re-looped")
def load_state_dict(self, state_dict):
self._sample_index = state_dict["sample_index"]
def state_dict(self):
return {"sample_index": self._sample_index}
class ValidationDataset(torch.utils.data.IterableDataset):
def __init__(self, filename: str):
super().__init__()
self.filename = pathlib.Path(filename)
if not self.filename.exists():
raise FileNotFoundError(f"File {self.filename.as_posix()} does not exist")
if self.filename.suffix == ".csv":
data = datasets.load_dataset("csv", data_files=self.filename.as_posix(), split="train")
elif self.filename.suffix == ".json":
data = datasets.load_dataset("json", data_files=self.filename.as_posix(), split="train", field="data")
elif self.filename.suffix == ".parquet":
data = datasets.load_dataset("parquet", data_files=self.filename.as_posix(), split="train")
elif self.filename.suffix == ".arrow":
data = datasets.load_dataset("arrow", data_files=self.filename.as_posix(), split="train")
else:
_SUPPORTED_FILE_FORMATS = [".csv", ".json", ".parquet", ".arrow"]
raise ValueError(
f"Unsupported file format {self.filename.suffix} for validation dataset. Supported formats are: {_SUPPORTED_FILE_FORMATS}"
)
self._data = data.to_iterable_dataset()
def __iter__(self):
for sample in self._data:
# For consistency reasons, we mandate that "caption" is always present in the validation dataset.
# However, since the model specifications use "prompt", we create an alias here.
sample["prompt"] = sample["caption"]
# Load image or video if the path is provided
# TODO(aryan): need to handle custom columns here for control conditions
sample["image"] = None
sample["video"] = None
if sample.get("image_path", None) is not None:
image_path = sample["image_path"]
if not pathlib.Path(image_path).is_file() and not image_path.startswith("http"):
logger.warning(f"Image file {image_path.as_posix()} does not exist.")
else:
sample["image"] = load_image(sample["image_path"])
if sample.get("video_path", None) is not None:
video_path = sample["video_path"]
if not pathlib.Path(video_path).is_file() and not video_path.startswith("http"):
logger.warning(f"Video file {video_path.as_posix()} does not exist.")
else:
sample["video"] = load_video(sample["video_path"])
if sample.get("control_image_path", None) is not None:
control_image_path = sample["control_image_path"]
if not pathlib.Path(control_image_path).is_file() and not control_image_path.startswith("http"):
logger.warning(f"Control Image file {control_image_path.as_posix()} does not exist.")
else:
sample["control_image"] = load_image(sample["control_image_path"])
if sample.get("control_video_path", None) is not None:
control_video_path = sample["control_video_path"]
if not pathlib.Path(control_video_path).is_file() and not control_video_path.startswith("http"):
logger.warning(f"Control Video file {control_video_path.as_posix()} does not exist.")
else:
sample["control_video"] = load_video(sample["control_video_path"])
sample = {k: v for k, v in sample.items() if v is not None}
yield sample
class IterableDatasetPreprocessingWrapper(
torch.utils.data.IterableDataset, torch.distributed.checkpoint.stateful.Stateful
):
def __init__(
self,
dataset: torch.utils.data.IterableDataset,
dataset_type: str,
id_token: Optional[str] = None,
image_resolution_buckets: List[Tuple[int, int]] = None,
video_resolution_buckets: List[Tuple[int, int, int]] = None,
rename_columns: Optional[Dict[str, str]] = None,
drop_columns: Optional[List[str]] = None,
reshape_mode: str = "bicubic",
remove_common_llm_caption_prefixes: bool = False,
**kwargs,
):
super().__init__()
self.dataset = dataset
self.dataset_type = dataset_type
self.id_token = id_token
self.image_resolution_buckets = image_resolution_buckets
self.video_resolution_buckets = video_resolution_buckets
self.rename_columns = rename_columns or {}
self.drop_columns = drop_columns or []
self.reshape_mode = reshape_mode
self.remove_common_llm_caption_prefixes = remove_common_llm_caption_prefixes
logger.info(
f"Initializing IterableDatasetPreprocessingWrapper for the dataset with the following configuration:\n"
f" - Dataset Type: {dataset_type}\n"
f" - ID Token: {id_token}\n"
f" - Image Resolution Buckets: {image_resolution_buckets}\n"
f" - Video Resolution Buckets: {video_resolution_buckets}\n"
f" - Rename Columns: {rename_columns}\n"
f" - Reshape Mode: {reshape_mode}\n"
f" - Remove Common LLM Caption Prefixes: {remove_common_llm_caption_prefixes}\n"
)
def __iter__(self):
logger.info("Starting IterableDatasetPreprocessingWrapper for the dataset")
for sample in iter(self.dataset):
for column in self.drop_columns:
sample.pop(column, None)
sample = {self.rename_columns.get(k, k): v for k, v in sample.items()}
for key in sample.keys():
if isinstance(sample[key], PIL.Image.Image):
sample[key] = _preprocess_image(sample[key])
elif isinstance(sample[key], (decord.VideoReader, torchvision.io.video_reader.VideoReader)):
sample[key] = _preprocess_video(sample[key])
if self.dataset_type == "image":
if self.image_resolution_buckets:
sample["_original_num_frames"] = 1
sample["_original_height"] = sample["image"].size(1)
sample["_original_width"] = sample["image"].size(2)
sample["image"] = FF.resize_to_nearest_bucket_image(
sample["image"], self.image_resolution_buckets, self.reshape_mode
)
elif self.dataset_type == "video":
if self.video_resolution_buckets:
sample["_original_num_frames"] = sample["video"].size(0)
sample["_original_height"] = sample["video"].size(2)
sample["_original_width"] = sample["video"].size(3)
sample["video"], _first_frame_only = FF.resize_to_nearest_bucket_video(
sample["video"], self.video_resolution_buckets, self.reshape_mode
)
if _first_frame_only:
msg = (
"The number of frames in the video is less than the minimum bucket size "
"specified. The first frame is being used as a single frame video. This "
"message is logged at the first occurence and for every 128th occurence "
"after that."
)
logger.log_freq("WARNING", "BUCKET_TEMPORAL_SIZE_UNAVAILABLE", msg, frequency=128)
sample["video"] = sample["video"][:1]
caption = sample["caption"]
if isinstance(caption, list):
caption = caption[0]
if caption.startswith("b'") and caption.endswith("'"):
caption = FF.convert_byte_str_to_str(caption)
if self.remove_common_llm_caption_prefixes:
caption = FF.remove_prefix(caption, constants.COMMON_LLM_START_PHRASES)
if self.id_token is not None:
caption = f"{self.id_token} {caption}"
sample["caption"] = caption
yield sample
def load_state_dict(self, state_dict):
self.dataset.load_state_dict(state_dict["dataset"])
def state_dict(self):
return {"dataset": self.dataset.state_dict()}
class IterableCombinedDataset(torch.utils.data.IterableDataset, torch.distributed.checkpoint.stateful.Stateful):
def __init__(self, datasets: List[torch.utils.data.IterableDataset], buffer_size: int, shuffle: bool = False):
super().__init__()
self.datasets = datasets
self.buffer_size = buffer_size
self.shuffle = shuffle
logger.info(
f"Initializing IterableCombinedDataset with the following configuration:\n"
f" - Number of Datasets: {len(datasets)}\n"
f" - Buffer Size: {buffer_size}\n"
f" - Shuffle: {shuffle}\n"
)
def __iter__(self):
logger.info(f"Starting IterableCombinedDataset with {len(self.datasets)} datasets")
iterators = [iter(dataset) for dataset in self.datasets]
buffer = []
per_iter = max(1, self.buffer_size // len(iterators))
for index, it in enumerate(iterators):
for _ in tqdm(range(per_iter), desc=f"Filling buffer from data iterator {index}"):
try:
buffer.append((it, next(it)))
except StopIteration:
continue
while len(buffer) > 0:
idx = 0
if self.shuffle:
idx = random.randint(0, len(buffer) - 1)
current_it, sample = buffer.pop(idx)
yield sample
try:
buffer.append((current_it, next(current_it)))
except StopIteration:
pass
def load_state_dict(self, state_dict):
for dataset, dataset_state_dict in zip(self.datasets, state_dict["datasets"]):
dataset.load_state_dict(dataset_state_dict)
def state_dict(self):
return {"datasets": [dataset.state_dict() for dataset in self.datasets]}
# TODO(aryan): maybe write a test for this
def initialize_dataset(
dataset_name_or_root: str,
dataset_type: str = "video",
streaming: bool = True,
infinite: bool = False,
*,
_caption_options: Optional[Dict[str, Any]] = None,
) -> torch.utils.data.IterableDataset:
assert dataset_type in ["image", "video"]
try:
does_repo_exist_on_hub = repo_exists(dataset_name_or_root, repo_type="dataset")
except huggingface_hub.errors.HFValidationError:
does_repo_exist_on_hub = False
if does_repo_exist_on_hub:
return _initialize_hub_dataset(dataset_name_or_root, dataset_type, infinite, _caption_options=_caption_options)
else:
return _initialize_local_dataset(
dataset_name_or_root, dataset_type, infinite, _caption_options=_caption_options
)
def combine_datasets(
datasets: List[torch.utils.data.IterableDataset], buffer_size: int, shuffle: bool = False
) -> torch.utils.data.IterableDataset:
return IterableCombinedDataset(datasets=datasets, buffer_size=buffer_size, shuffle=shuffle)
def wrap_iterable_dataset_for_preprocessing(
dataset: torch.utils.data.IterableDataset, dataset_type: str, config: Dict[str, Any]
) -> torch.utils.data.IterableDataset:
return IterableDatasetPreprocessingWrapper(dataset, dataset_type, **config)
def _initialize_local_dataset(
dataset_name_or_root: str,
dataset_type: str,
infinite: bool = False,
*,
_caption_options: Optional[Dict[str, Any]] = None,
):
root = pathlib.Path(dataset_name_or_root)
supported_metadata_files = ["metadata.json", "metadata.jsonl", "metadata.csv"]
metadata_files = [root / metadata_file for metadata_file in supported_metadata_files]
metadata_files = [metadata_file for metadata_file in metadata_files if metadata_file.exists()]
if len(metadata_files) > 1:
raise ValueError("Found multiple metadata files. Please ensure there is only one metadata file.")
if len(metadata_files) == 1:
if dataset_type == "image":
dataset = ImageFolderDataset(root.as_posix(), infinite=infinite)
else:
dataset = VideoFolderDataset(root.as_posix(), infinite=infinite)
return dataset
file_list = find_files(root.as_posix(), "*", depth=100)
has_tar_or_parquet_files = any(file.endswith(".tar") or file.endswith(".parquet") for file in file_list)
if has_tar_or_parquet_files:
return _initialize_webdataset(root.as_posix(), dataset_type, infinite, _caption_options=_caption_options)
if _has_data_caption_file_pairs(root, remote=False):
if dataset_type == "image":
dataset = ImageCaptionFilePairDataset(root.as_posix(), infinite=infinite)
else:
dataset = VideoCaptionFilePairDataset(root.as_posix(), infinite=infinite)
elif _has_data_file_caption_file_lists(root, remote=False):
if dataset_type == "image":
dataset = ImageFileCaptionFileListDataset(root.as_posix(), infinite=infinite)
else:
dataset = VideoFileCaptionFileListDataset(root.as_posix(), infinite=infinite)
else:
raise ValueError(
f"Could not find any supported dataset structure in the directory {root}. Please open an issue at "
f"https://github.com/a-r-r-o-w/finetrainers with information about your dataset structure and we will "
f"help you set it up."
)
return dataset
def _initialize_hub_dataset(
dataset_name: str, dataset_type: str, infinite: bool = False, *, _caption_options: Optional[Dict[str, Any]] = None
):
repo_file_list = list_repo_files(dataset_name, repo_type="dataset")
if _has_data_caption_file_pairs(repo_file_list, remote=True):
return _initialize_data_caption_file_dataset_from_hub(dataset_name, dataset_type, infinite)
elif _has_data_file_caption_file_lists(repo_file_list, remote=True):
return _initialize_data_file_caption_file_dataset_from_hub(dataset_name, dataset_type, infinite)
has_tar_or_parquet_files = any(file.endswith(".tar") or file.endswith(".parquet") for file in repo_file_list)
if has_tar_or_parquet_files:
return _initialize_webdataset(dataset_name, dataset_type, infinite, _caption_options=_caption_options)
# TODO(aryan): This should be improved
caption_files = [pathlib.Path(file).name for file in repo_file_list if file.endswith(".txt")]
if len(caption_files) < MAX_PRECOMPUTABLE_ITEMS_LIMIT:
try:
dataset_root = snapshot_download(dataset_name, repo_type="dataset")
if dataset_type == "image":
dataset = ImageFolderDataset(dataset_root, infinite=infinite)
else:
dataset = VideoFolderDataset(dataset_root, infinite=infinite)
return dataset
except Exception:
pass
raise ValueError(f"Could not load dataset {dataset_name} from the HF Hub")
def _initialize_data_caption_file_dataset_from_hub(
dataset_name: str, dataset_type: str, infinite: bool = False
) -> torch.utils.data.IterableDataset:
logger.info(f"Downloading dataset {dataset_name} from the HF Hub")
dataset_root = snapshot_download(dataset_name, repo_type="dataset")
if dataset_type == "image":
return ImageCaptionFilePairDataset(dataset_root, infinite=infinite)
else:
return VideoCaptionFilePairDataset(dataset_root, infinite=infinite)
def _initialize_data_file_caption_file_dataset_from_hub(
dataset_name: str, dataset_type: str, infinite: bool = False
) -> torch.utils.data.IterableDataset:
logger.info(f"Downloading dataset {dataset_name} from the HF Hub")
dataset_root = snapshot_download(dataset_name, repo_type="dataset")
if dataset_type == "image":
return ImageFileCaptionFileListDataset(dataset_root, infinite=infinite)
else:
return VideoFileCaptionFileListDataset(dataset_root, infinite=infinite)
def _initialize_webdataset(
dataset_name: str, dataset_type: str, infinite: bool = False, _caption_options: Optional[Dict[str, Any]] = None
) -> torch.utils.data.IterableDataset:
logger.info(f"Streaming webdataset {dataset_name} from the HF Hub")
_caption_options = _caption_options or {}
if dataset_type == "image":
return ImageWebDataset(dataset_name, infinite=infinite, **_caption_options)
else:
return VideoWebDataset(dataset_name, infinite=infinite, **_caption_options)
def _has_data_caption_file_pairs(root: Union[pathlib.Path, List[str]], remote: bool = False) -> bool:
# TODO(aryan): this logic can be improved
if not remote:
caption_files = find_files(root.as_posix(), "*.txt", depth=0)
for caption_file in caption_files:
caption_file = pathlib.Path(caption_file)
for extension in [*constants.SUPPORTED_IMAGE_FILE_EXTENSIONS, *constants.SUPPORTED_VIDEO_FILE_EXTENSIONS]:
data_filename = caption_file.with_suffix(f".{extension}")
if data_filename.exists():
return True
return False
else:
caption_files = [file for file in root if file.endswith(".txt")]
for caption_file in caption_files:
caption_file = pathlib.Path(caption_file)
for extension in [*constants.SUPPORTED_IMAGE_FILE_EXTENSIONS, *constants.SUPPORTED_VIDEO_FILE_EXTENSIONS]:
data_filename = caption_file.with_suffix(f".{extension}").name
if data_filename in root:
return True
return False
def _has_data_file_caption_file_lists(root: Union[pathlib.Path, List[str]], remote: bool = False) -> bool:
# TODO(aryan): this logic can be improved
if not remote:
file_list = {x.name for x in root.iterdir()}
has_caption_files = any(file in file_list for file in COMMON_CAPTION_FILES)
has_video_files = any(file in file_list for file in COMMON_VIDEO_FILES)
has_image_files = any(file in file_list for file in COMMON_IMAGE_FILES)
return has_caption_files and (has_video_files or has_image_files)
else:
has_caption_files = any(file in root for file in COMMON_CAPTION_FILES)
has_video_files = any(file in root for file in COMMON_VIDEO_FILES)
has_image_files = any(file in root for file in COMMON_IMAGE_FILES)
return has_caption_files and (has_video_files or has_image_files)
def _read_caption_from_file(filename: str) -> str:
with open(filename, "r") as f:
return f.read().strip()
def _preprocess_image(image: PIL.Image.Image) -> torch.Tensor:
image = image.convert("RGB")
image = np.array(image).astype(np.float32)
image = torch.from_numpy(image)
image = image.permute(2, 0, 1).contiguous() / 127.5 - 1.0
return image
if is_datasets_version("<", "3.4.0"):
def _preprocess_video(video: decord.VideoReader) -> torch.Tensor:
video = video.get_batch(list(range(len(video))))
video = video.permute(0, 3, 1, 2).contiguous()
video = video.float() / 127.5 - 1.0
return video
else:
# Hardcode max frames for now. Ideally, we should allow user to set this and handle it in IterableDatasetPreprocessingWrapper
MAX_FRAMES = 4096
def _preprocess_video(video: torchvision.io.video_reader.VideoReader) -> torch.Tensor:
frames = []
# Error driven data loading! torchvision does not expose length of video
try:
for _ in range(MAX_FRAMES):
frames.append(next(video)["data"])
except StopIteration:
pass
video = torch.stack(frames)
video = video.float() / 127.5 - 1.0
return video