jbilcke-hf's picture
jbilcke-hf HF Staff
we are going to hack into finetrainers
9fd1204
raw
history blame
16.6 kB
import functools
import math
from typing import Any, Callable, Dict, List, Optional, Type, Union
import torch
from torch.distributed.checkpoint.state_dict import (
StateDictOptions,
get_optimizer_state_dict,
set_optimizer_state_dict,
)
from torch.distributed.checkpoint.stateful import Stateful
from .parallel import ParallelBackendEnum
from .utils.import_utils import is_bitsandbytes_available
class OptimizerWrapper(Stateful):
r"""
Optimizer wrapper that:
- allows step/zero_grad on multiple optimizers needed for virtual pipeline stages
- saves/loading optimizer state_dict at checkpoint
"""
def __init__(
self,
model_parts: List[torch.nn.Module],
optimizer_cls: Type[torch.optim.Optimizer],
optimizer_kwargs: Dict[str, Any],
) -> None:
self.optimizer_cls = optimizer_cls
self.optimizer_kwargs = optimizer_kwargs
self.optimizers = []
self.model_parts = model_parts
for model in self.model_parts:
optimizer = optimizer_cls(model.parameters(), **optimizer_kwargs)
self.optimizers.append(optimizer)
def step(self) -> None:
for optimizer in self.optimizers:
optimizer.step()
def zero_grad(self) -> None:
for optimizer in self.optimizers:
optimizer.zero_grad()
def state_dict(self) -> Dict[str, Any]:
func = functools.partial(
get_optimizer_state_dict,
options=StateDictOptions(flatten_optimizer_state_dict=True),
)
return {k: v for sd in map(func, self.model_parts, self.optimizers) for k, v in sd.items()}
def load_state_dict(self, state_dict: Dict[str, Any]) -> None:
func = functools.partial(
set_optimizer_state_dict,
optim_state_dict=state_dict,
options=StateDictOptions(flatten_optimizer_state_dict=True),
)
list(map(func, self.model_parts, self.optimizers))
class SchedulerWrapper:
def __init__(
self, optimizers, scheduler_lambda_fn: Type[torch.optim.lr_scheduler.LRScheduler], last_epoch: int
) -> None:
self.schedulers = []
for optimizer in optimizers:
self.schedulers.append(torch.optim.lr_scheduler.LambdaLR(optimizer, scheduler_lambda_fn, last_epoch))
def step(self) -> None:
for scheduler in self.schedulers:
scheduler.step()
def get_last_lr(self) -> List[float]:
# TODO(aryan): look into this later. Currently calling it leads to NCCL hang?????
return {f"lr_{idx}": scheduler.get_last_lr() for idx, scheduler in enumerate(self.schedulers)}
def get_lr_scheduler_state(self) -> Dict[str, Any]:
state_dict = {}
if len(self.schedulers) == 1:
state_dict["lr_scheduler"] = self.schedulers[0]
else:
# For now, pipeline-parallel with looped schedules does not support resharding for lr_scheduler.
# It should only support saving and loading a distributed checkpoint with the same number of pp ranks
for idx, lr_scheduler in enumerate(self.schedulers):
state_dict[f"lr_scheduler_{idx}"] = lr_scheduler
return state_dict
def get_optimizer(
parallel_backend: ParallelBackendEnum,
name: str,
model_parts: List[torch.nn.Module],
learning_rate: float = 1e-3,
beta1: float = 0.9,
beta2: float = 0.95,
beta3: float = 0.999,
epsilon: float = 1e-8,
weight_decay: float = 1e-4,
fused: bool = False,
) -> Union[torch.optim.Optimizer, OptimizerWrapper]:
name = name.lower()
_raise_errors_if_packages_not_available(name)
if name == "adam":
optimizer_cls = torch.optim.Adam
optimizer_kwargs = {
"lr": learning_rate,
"betas": (beta1, beta2),
"eps": epsilon,
"weight_decay": weight_decay,
"fused": fused,
}
elif name == "adamw":
optimizer_cls = torch.optim.AdamW
optimizer_kwargs = {
"lr": learning_rate,
"betas": (beta1, beta2),
"eps": epsilon,
"weight_decay": weight_decay,
"fused": fused,
}
elif name == "adam-bnb":
from bitsandbytes.optim import Adam
optimizer_cls = Adam
optimizer_kwargs = {
"lr": learning_rate,
"betas": (beta1, beta2),
"eps": epsilon,
"weight_decay": weight_decay,
}
elif name == "adamw-bnb":
from bitsandbytes.optim import AdamW
optimizer_cls = AdamW
optimizer_kwargs = {
"lr": learning_rate,
"betas": (beta1, beta2),
"eps": epsilon,
"weight_decay": weight_decay,
}
elif name == "adam-bnb-8bit":
from bitsandbytes.optim import Adam8bit
optimizer_cls = Adam8bit
optimizer_kwargs = {
"lr": learning_rate,
"betas": (beta1, beta2),
"eps": epsilon,
"weight_decay": weight_decay,
}
elif name == "adamw-bnb-8bit":
from bitsandbytes.optim import AdamW8bit
optimizer_cls = AdamW8bit
optimizer_kwargs = {
"lr": learning_rate,
"betas": (beta1, beta2),
"eps": epsilon,
"weight_decay": weight_decay,
}
# TODO(aryan): handle bitsandbytes and torchao
else:
raise ValueError(f"Unsupported optimizer: {name}")
if parallel_backend == ParallelBackendEnum.ACCELERATE:
return get_optimizer_accelerate(model_parts, optimizer_cls, optimizer_kwargs)
elif parallel_backend == ParallelBackendEnum.PTD:
return get_optimizer_ptd(model_parts, optimizer_cls, optimizer_kwargs)
def get_optimizer_accelerate(
model_parts: List[torch.nn.Module], optimizer_cls: Type[torch.optim.Optimizer], optimizer_kwargs: Dict[str, Any]
) -> torch.optim.Optimizer:
params = [param for model in model_parts for param in model.parameters() if param.requires_grad]
optimizer = optimizer_cls(params, **optimizer_kwargs)
return optimizer
def get_optimizer_ptd(
model_parts: List[torch.nn.Module], optimizer_cls: Type[torch.optim.Optimizer], optimizer_kwargs: Dict[str, Any]
) -> OptimizerWrapper:
return OptimizerWrapper(model_parts, optimizer_cls, optimizer_kwargs)
def get_lr_scheduler(
parallel_backend: ParallelBackendEnum,
name: str,
optimizer: Union[torch.optim.Optimizer, OptimizerWrapper],
step_rules: Optional[str] = None,
num_warmup_steps: Optional[int] = None,
num_training_steps: Optional[int] = None,
num_cycles: int = 1,
power: float = 1.0,
lr_init: float = 1e-3,
lr_end: float = 1e-7,
last_epoch: int = -1,
) -> Union[torch.optim.lr_scheduler.LambdaLR, SchedulerWrapper]:
name = name.lower()
if name == "constant":
scheduler_lambda_fn = get_constant_schedule()
elif name == "constant_with_warmup":
scheduler_lambda_fn = get_constant_schedule_with_warmup(num_warmup_steps)
elif name == "piecewise_constant":
scheduler_lambda_fn = get_piecewise_constant_schedule(step_rules)
elif name == "linear":
scheduler_lambda_fn = get_linear_schedule_with_warmup(num_warmup_steps, num_training_steps)
elif name == "cosine":
scheduler_lambda_fn = get_cosine_schedule_with_warmup(num_warmup_steps, num_training_steps, num_cycles)
elif name == "cosine_with_restarts":
scheduler_lambda_fn = get_cosine_with_hard_restarts_schedule_with_warmup(
num_warmup_steps, num_training_steps, num_cycles
)
elif name == "polynomial":
scheduler_lambda_fn = get_polynomial_decay_schedule_with_warmup(
num_warmup_steps, num_training_steps, lr_init, lr_end, power
)
else:
raise ValueError(f"Unsupported scheduler: {name}")
if parallel_backend == ParallelBackendEnum.ACCELERATE:
return get_lr_scheduler_accelerate(optimizer, scheduler_lambda_fn, last_epoch)
elif parallel_backend == ParallelBackendEnum.PTD:
return get_lr_scheduler_ptd(optimizer, scheduler_lambda_fn, last_epoch)
def get_lr_scheduler_accelerate(
optimizer: torch.optim.Optimizer,
scheduler_lambda_fn: Type[torch.optim.lr_scheduler.LRScheduler],
last_epoch: int = -1,
) -> torch.optim.lr_scheduler.LambdaLR:
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, scheduler_lambda_fn, last_epoch)
return scheduler
def get_lr_scheduler_ptd(
optimizer: OptimizerWrapper, scheduler_lambda_fn: Type[torch.optim.lr_scheduler.LRScheduler], last_epoch: int = -1
) -> SchedulerWrapper:
return SchedulerWrapper(optimizer.optimizers, scheduler_lambda_fn, last_epoch)
# ==============================
# Adapted from https://github.com/huggingface/diffusers/blob/196aef5a6f76e1ad6ba889184860c3633d166910/src/diffusers/optimization.py
# ==============================
def get_constant_schedule() -> Callable[[int], float]:
r"""
Create a schedule with a constant learning rate, using the learning rate set in optimizer.
"""
def lr_lambda(current_step: int):
return 1.0
return lr_lambda
def get_constant_schedule_with_warmup(num_warmup_steps: int) -> Callable[[int], float]:
r"""
Create a schedule with a constant learning rate preceded by a warmup period during which the learning rate
increases linearly between 0 and the initial lr set in the optimizer.
Args:
num_warmup_steps (`int`):
The number of steps for the warmup phase.
"""
def lr_lambda(current_step: int):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1.0, num_warmup_steps))
return 1.0
return lr_lambda
def get_piecewise_constant_schedule(step_rules: str) -> Callable[[int], float]:
r"""
Create a schedule with a constant learning rate, using the learning rate set in optimizer.
Args:
step_rules (`string`):
The rules for the learning rate. ex: rule_steps="1:10,0.1:20,0.01:30,0.005" it means that the learning rate
if multiple 1 for the first 10 steps, multiple 0.1 for the next 20 steps, multiple 0.01 for the next 30
steps and multiple 0.005 for the other steps.
"""
rules_dict = {}
rule_list = step_rules.split(",")
for rule_str in rule_list[:-1]:
value_str, steps_str = rule_str.split(":")
steps = int(steps_str)
value = float(value_str)
rules_dict[steps] = value
last_lr_multiple = float(rule_list[-1])
def create_rules_function(rules_dict, last_lr_multiple):
def rule_func(steps: int) -> float:
sorted_steps = sorted(rules_dict.keys())
for i, sorted_step in enumerate(sorted_steps):
if steps < sorted_step:
return rules_dict[sorted_steps[i]]
return last_lr_multiple
return rule_func
rules_func = create_rules_function(rules_dict, last_lr_multiple)
return rules_func
def get_linear_schedule_with_warmup(num_warmup_steps: int, num_training_steps: int) -> Callable[[int], float]:
r"""
Create a schedule with a learning rate that decreases linearly from the initial lr set in the optimizer to 0, after
a warmup period during which it increases linearly from 0 to the initial lr set in the optimizer.
Args:
num_warmup_steps (`int`):
The number of steps for the warmup phase.
num_training_steps (`int`):
The total number of training steps.
"""
def lr_lambda(current_step: int):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
return max(
0.0, float(num_training_steps - current_step) / float(max(1, num_training_steps - num_warmup_steps))
)
return lr_lambda
def get_cosine_schedule_with_warmup(
num_warmup_steps: int,
num_training_steps: int,
num_cycles: float = 0.5,
) -> Callable[[int], float]:
r"""
Create a schedule with a learning rate that decreases following the values of the cosine function between the
initial lr set in the optimizer to 0, after a warmup period during which it increases linearly between 0 and the
initial lr set in the optimizer.
Args:
num_warmup_steps (`int`):
The number of steps for the warmup phase.
num_training_steps (`int`):
The total number of training steps.
num_periods (`float`, *optional*, defaults to 0.5):
The number of periods of the cosine function in a schedule (the default is to just decrease from the max
value to 0 following a half-cosine).
"""
def lr_lambda(current_step):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps))
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))
return lr_lambda
def get_cosine_with_hard_restarts_schedule_with_warmup(
num_warmup_steps: int,
num_training_steps: int,
num_cycles: int = 1,
) -> Callable[[int], float]:
r"""
Create a schedule with a learning rate that decreases following the values of the cosine function between the
initial lr set in the optimizer to 0, with several hard restarts, after a warmup period during which it increases
linearly between 0 and the initial lr set in the optimizer.
Args:
num_warmup_steps (`int`):
The number of steps for the warmup phase.
num_training_steps (`int`):
The total number of training steps.
num_cycles (`int`, *optional*, defaults to 1):
The number of hard restarts to use.
"""
def lr_lambda(current_step):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps))
if progress >= 1.0:
return 0.0
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * ((float(num_cycles) * progress) % 1.0))))
return lr_lambda
def get_polynomial_decay_schedule_with_warmup(
num_warmup_steps: int,
num_training_steps: int,
lr_init: float,
lr_end: float = 1e-7,
power: float = 1.0,
) -> Callable[[int], float]:
r"""
Create a schedule with a learning rate that decreases as a polynomial decay from the initial lr set in the
optimizer to end lr defined by *lr_end*, after a warmup period during which it increases linearly from 0 to the
initial lr set in the optimizer.
Args:
num_warmup_steps (`int`):
The number of steps for the warmup phase.
num_training_steps (`int`):
The total number of training steps.
lr_end (`float`, *optional*, defaults to 1e-7):
The end LR.
power (`float`, *optional*, defaults to 1.0):
Power factor.
Note: *power* defaults to 1.0 as in the fairseq implementation, which in turn is based on the original BERT implementation at
https://github.com/google-research/bert/blob/f39e881b169b9d53bea03d2d341b31707a6c052b/optimization.py#L37
"""
if not (lr_init > lr_end):
raise ValueError(f"lr_end ({lr_end}) must be smaller than initial lr ({lr_init})")
def lr_lambda(current_step: int):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
elif current_step > num_training_steps:
return lr_end / lr_init # as LambdaLR multiplies by lr_init
else:
lr_range = lr_init - lr_end
decay_steps = num_training_steps - num_warmup_steps
pct_remaining = 1 - (current_step - num_warmup_steps) / decay_steps
decay = lr_range * pct_remaining**power + lr_end
return decay / lr_init # as LambdaLR multiplies by lr_init
return lr_lambda
def _raise_errors_if_packages_not_available(name: str) -> None:
name_split = name.split("-")
if len(name_split) < 2:
return
package_name = name_split[1]
if package_name == "bnb":
if not is_bitsandbytes_available():
raise ImportError(
f"Please install bitsandbytes by running `pip install bitsandbytes` to use the {name} optimizer."
)