|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
|
import logging |
|
|
import math |
|
|
import os |
|
|
import shutil |
|
|
from datetime import timedelta |
|
|
from pathlib import Path |
|
|
from typing import Any, Dict |
|
|
|
|
|
import diffusers |
|
|
import torch |
|
|
import transformers |
|
|
import wandb |
|
|
from accelerate import Accelerator, DistributedType |
|
|
from accelerate.logging import get_logger |
|
|
from accelerate.utils import ( |
|
|
DistributedDataParallelKwargs, |
|
|
InitProcessGroupKwargs, |
|
|
ProjectConfiguration, |
|
|
set_seed, |
|
|
) |
|
|
from diffusers import ( |
|
|
AutoencoderKLCogVideoX, |
|
|
CogVideoXDPMScheduler, |
|
|
CogVideoXPipeline, |
|
|
CogVideoXTransformer3DModel, |
|
|
) |
|
|
from diffusers.models.autoencoders.vae import DiagonalGaussianDistribution |
|
|
from diffusers.optimization import get_scheduler |
|
|
from diffusers.training_utils import cast_training_params |
|
|
from diffusers.utils import convert_unet_state_dict_to_peft, export_to_video |
|
|
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card |
|
|
from huggingface_hub import create_repo, upload_folder |
|
|
from peft import LoraConfig, get_peft_model_state_dict, set_peft_model_state_dict |
|
|
from torch.utils.data import DataLoader |
|
|
from tqdm.auto import tqdm |
|
|
from transformers import AutoTokenizer, T5EncoderModel |
|
|
|
|
|
|
|
|
from args import get_args |
|
|
from dataset import BucketSampler, VideoDatasetWithResizing, VideoDatasetWithResizeAndRectangleCrop |
|
|
from text_encoder import compute_prompt_embeddings |
|
|
from utils import ( |
|
|
get_gradient_norm, |
|
|
get_optimizer, |
|
|
prepare_rotary_positional_embeddings, |
|
|
print_memory, |
|
|
reset_memory, |
|
|
unwrap_model, |
|
|
) |
|
|
|
|
|
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
|
|
|
def save_model_card( |
|
|
repo_id: str, |
|
|
videos=None, |
|
|
base_model: str = None, |
|
|
validation_prompt=None, |
|
|
repo_folder=None, |
|
|
fps=8, |
|
|
): |
|
|
widget_dict = [] |
|
|
if videos is not None: |
|
|
for i, video in enumerate(videos): |
|
|
export_to_video(video, os.path.join(repo_folder, f"final_video_{i}.mp4", fps=fps)) |
|
|
widget_dict.append( |
|
|
{ |
|
|
"text": validation_prompt if validation_prompt else " ", |
|
|
"output": {"url": f"video_{i}.mp4"}, |
|
|
} |
|
|
) |
|
|
|
|
|
model_description = f""" |
|
|
# CogVideoX LoRA Finetune |
|
|
|
|
|
<Gallery /> |
|
|
|
|
|
## Model description |
|
|
|
|
|
This is a lora finetune of the CogVideoX model `{base_model}`. |
|
|
|
|
|
The model was trained using [CogVideoX Factory](https://github.com/a-r-r-o-w/cogvideox-factory) - a repository containing memory-optimized training scripts for the CogVideoX family of models using [TorchAO](https://github.com/pytorch/ao) and [DeepSpeed](https://github.com/microsoft/DeepSpeed). The scripts were adopted from [CogVideoX Diffusers trainer](https://github.com/huggingface/diffusers/blob/main/examples/cogvideo/train_cogvideox_lora.py). |
|
|
|
|
|
## Download model |
|
|
|
|
|
[Download LoRA]({repo_id}/tree/main) in the Files & Versions tab. |
|
|
|
|
|
## Usage |
|
|
|
|
|
Requires the [🧨 Diffusers library](https://github.com/huggingface/diffusers) installed. |
|
|
|
|
|
```py |
|
|
import torch |
|
|
from diffusers import CogVideoXPipeline |
|
|
from diffusers.utils import export_to_video |
|
|
|
|
|
pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-5b", torch_dtype=torch.bfloat16).to("cuda") |
|
|
pipe.load_lora_weights("{repo_id}", weight_name="pytorch_lora_weights.safetensors", adapter_name="cogvideox-lora") |
|
|
|
|
|
# The LoRA adapter weights are determined by what was used for training. |
|
|
# In this case, we assume `--lora_alpha` is 32 and `--rank` is 64. |
|
|
# It can be made lower or higher from what was used in training to decrease or amplify the effect |
|
|
# of the LoRA upto a tolerance, beyond which one might notice no effect at all or overflows. |
|
|
pipe.set_adapters(["cogvideox-lora"], [32 / 64]) |
|
|
|
|
|
video = pipe("{validation_prompt}", guidance_scale=6, use_dynamic_cfg=True).frames[0] |
|
|
export_to_video(video, "output.mp4", fps=8) |
|
|
``` |
|
|
|
|
|
For more details, including weighting, merging and fusing LoRAs, check the [documentation](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) on loading LoRAs in diffusers. |
|
|
|
|
|
## License |
|
|
|
|
|
Please adhere to the licensing terms as described [here](https://huggingface.co/THUDM/CogVideoX-5b/blob/main/LICENSE) and [here](https://huggingface.co/THUDM/CogVideoX-2b/blob/main/LICENSE). |
|
|
""" |
|
|
model_card = load_or_create_model_card( |
|
|
repo_id_or_path=repo_id, |
|
|
from_training=True, |
|
|
license="other", |
|
|
base_model=base_model, |
|
|
prompt=validation_prompt, |
|
|
model_description=model_description, |
|
|
widget=widget_dict, |
|
|
) |
|
|
tags = [ |
|
|
"text-to-video", |
|
|
"diffusers-training", |
|
|
"diffusers", |
|
|
"lora", |
|
|
"cogvideox", |
|
|
"cogvideox-diffusers", |
|
|
"template:sd-lora", |
|
|
] |
|
|
|
|
|
model_card = populate_model_card(model_card, tags=tags) |
|
|
model_card.save(os.path.join(repo_folder, "README.md")) |
|
|
|
|
|
|
|
|
def log_validation( |
|
|
accelerator: Accelerator, |
|
|
pipe: CogVideoXPipeline, |
|
|
args: Dict[str, Any], |
|
|
pipeline_args: Dict[str, Any], |
|
|
epoch, |
|
|
is_final_validation: bool = False, |
|
|
): |
|
|
logger.info( |
|
|
f"Running validation... \n Generating {args.num_validation_videos} videos with prompt: {pipeline_args['prompt']}." |
|
|
) |
|
|
|
|
|
pipe = pipe.to(accelerator.device) |
|
|
|
|
|
|
|
|
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None |
|
|
|
|
|
videos = [] |
|
|
for _ in range(args.num_validation_videos): |
|
|
video = pipe(**pipeline_args, generator=generator, output_type="np").frames[0] |
|
|
videos.append(video) |
|
|
|
|
|
for tracker in accelerator.trackers: |
|
|
phase_name = "test" if is_final_validation else "validation" |
|
|
if tracker.name == "wandb": |
|
|
video_filenames = [] |
|
|
for i, video in enumerate(videos): |
|
|
prompt = ( |
|
|
pipeline_args["prompt"][:25] |
|
|
.replace(" ", "_") |
|
|
.replace(" ", "_") |
|
|
.replace("'", "_") |
|
|
.replace('"', "_") |
|
|
.replace("/", "_") |
|
|
) |
|
|
filename = os.path.join(args.output_dir, f"{phase_name}_video_{i}_{prompt}.mp4") |
|
|
export_to_video(video, filename, fps=8) |
|
|
video_filenames.append(filename) |
|
|
|
|
|
tracker.log( |
|
|
{ |
|
|
phase_name: [ |
|
|
wandb.Video(filename, caption=f"{i}: {pipeline_args['prompt']}") |
|
|
for i, filename in enumerate(video_filenames) |
|
|
] |
|
|
} |
|
|
) |
|
|
|
|
|
return videos |
|
|
|
|
|
|
|
|
class CollateFunction: |
|
|
def __init__(self, weight_dtype: torch.dtype, load_tensors: bool) -> None: |
|
|
self.weight_dtype = weight_dtype |
|
|
self.load_tensors = load_tensors |
|
|
|
|
|
def __call__(self, data: Dict[str, Any]) -> Dict[str, torch.Tensor]: |
|
|
prompts = [x["prompt"] for x in data[0]] |
|
|
|
|
|
if self.load_tensors: |
|
|
prompts = torch.stack(prompts).to(dtype=self.weight_dtype, non_blocking=True) |
|
|
|
|
|
videos = [x["video"] for x in data[0]] |
|
|
videos = torch.stack(videos).to(dtype=self.weight_dtype, non_blocking=True) |
|
|
|
|
|
return { |
|
|
"videos": videos, |
|
|
"prompts": prompts, |
|
|
} |
|
|
|
|
|
|
|
|
def main(args): |
|
|
if args.report_to == "wandb" and args.hub_token is not None: |
|
|
raise ValueError( |
|
|
"You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token." |
|
|
" Please use `huggingface-cli login` to authenticate with the Hub." |
|
|
) |
|
|
|
|
|
if torch.backends.mps.is_available() and args.mixed_precision == "bf16": |
|
|
|
|
|
raise ValueError( |
|
|
"Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead." |
|
|
) |
|
|
|
|
|
logging_dir = Path(args.output_dir, args.logging_dir) |
|
|
|
|
|
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) |
|
|
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True) |
|
|
init_process_group_kwargs = InitProcessGroupKwargs(backend="nccl", timeout=timedelta(seconds=args.nccl_timeout)) |
|
|
accelerator = Accelerator( |
|
|
gradient_accumulation_steps=args.gradient_accumulation_steps, |
|
|
mixed_precision=args.mixed_precision, |
|
|
log_with=args.report_to, |
|
|
project_config=accelerator_project_config, |
|
|
kwargs_handlers=[ddp_kwargs, init_process_group_kwargs], |
|
|
) |
|
|
|
|
|
|
|
|
if torch.backends.mps.is_available(): |
|
|
accelerator.native_amp = False |
|
|
|
|
|
|
|
|
logging.basicConfig( |
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
|
level=logging.INFO, |
|
|
) |
|
|
logger.info(accelerator.state, main_process_only=False) |
|
|
if accelerator.is_local_main_process: |
|
|
transformers.utils.logging.set_verbosity_warning() |
|
|
diffusers.utils.logging.set_verbosity_info() |
|
|
else: |
|
|
transformers.utils.logging.set_verbosity_error() |
|
|
diffusers.utils.logging.set_verbosity_error() |
|
|
|
|
|
|
|
|
if args.seed is not None: |
|
|
set_seed(args.seed) |
|
|
|
|
|
|
|
|
if accelerator.is_main_process: |
|
|
if args.output_dir is not None: |
|
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
|
|
if args.push_to_hub: |
|
|
repo_id = create_repo( |
|
|
repo_id=args.hub_model_id or Path(args.output_dir).name, |
|
|
exist_ok=True, |
|
|
).repo_id |
|
|
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
|
args.pretrained_model_name_or_path, |
|
|
subfolder="tokenizer", |
|
|
revision=args.revision, |
|
|
) |
|
|
|
|
|
text_encoder = T5EncoderModel.from_pretrained( |
|
|
args.pretrained_model_name_or_path, |
|
|
subfolder="text_encoder", |
|
|
revision=args.revision, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
load_dtype = torch.bfloat16 if "5b" in args.pretrained_model_name_or_path.lower() else torch.float16 |
|
|
transformer = CogVideoXTransformer3DModel.from_pretrained( |
|
|
args.pretrained_model_name_or_path, |
|
|
subfolder="transformer", |
|
|
torch_dtype=load_dtype, |
|
|
revision=args.revision, |
|
|
variant=args.variant, |
|
|
) |
|
|
|
|
|
vae = AutoencoderKLCogVideoX.from_pretrained( |
|
|
args.pretrained_model_name_or_path, |
|
|
subfolder="vae", |
|
|
revision=args.revision, |
|
|
variant=args.variant, |
|
|
) |
|
|
|
|
|
scheduler = CogVideoXDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") |
|
|
|
|
|
if args.enable_slicing: |
|
|
vae.enable_slicing() |
|
|
if args.enable_tiling: |
|
|
vae.enable_tiling() |
|
|
|
|
|
|
|
|
text_encoder.requires_grad_(False) |
|
|
transformer.requires_grad_(False) |
|
|
vae.requires_grad_(False) |
|
|
|
|
|
VAE_SCALING_FACTOR = vae.config.scaling_factor |
|
|
VAE_SCALE_FACTOR_SPATIAL = 2 ** (len(vae.config.block_out_channels) - 1) |
|
|
RoPE_BASE_HEIGHT = transformer.config.sample_height * VAE_SCALE_FACTOR_SPATIAL |
|
|
RoPE_BASE_WIDTH = transformer.config.sample_width * VAE_SCALE_FACTOR_SPATIAL |
|
|
|
|
|
|
|
|
|
|
|
weight_dtype = torch.float32 |
|
|
if accelerator.state.deepspeed_plugin: |
|
|
|
|
|
if ( |
|
|
"fp16" in accelerator.state.deepspeed_plugin.deepspeed_config |
|
|
and accelerator.state.deepspeed_plugin.deepspeed_config["fp16"]["enabled"] |
|
|
): |
|
|
weight_dtype = torch.float16 |
|
|
if ( |
|
|
"bf16" in accelerator.state.deepspeed_plugin.deepspeed_config |
|
|
and accelerator.state.deepspeed_plugin.deepspeed_config["bf16"]["enabled"] |
|
|
): |
|
|
weight_dtype = torch.bfloat16 |
|
|
else: |
|
|
if accelerator.mixed_precision == "fp16": |
|
|
weight_dtype = torch.float16 |
|
|
elif accelerator.mixed_precision == "bf16": |
|
|
weight_dtype = torch.bfloat16 |
|
|
|
|
|
if torch.backends.mps.is_available() and weight_dtype == torch.bfloat16: |
|
|
|
|
|
raise ValueError( |
|
|
"Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead." |
|
|
) |
|
|
|
|
|
text_encoder.to(accelerator.device, dtype=weight_dtype) |
|
|
transformer.to(accelerator.device, dtype=weight_dtype) |
|
|
vae.to(accelerator.device, dtype=weight_dtype) |
|
|
|
|
|
if args.gradient_checkpointing: |
|
|
transformer.enable_gradient_checkpointing() |
|
|
|
|
|
|
|
|
transformer_lora_config = LoraConfig( |
|
|
r=args.rank, |
|
|
lora_alpha=args.lora_alpha, |
|
|
init_lora_weights=True, |
|
|
target_modules=["to_k", "to_q", "to_v", "to_out.0"], |
|
|
) |
|
|
transformer.add_adapter(transformer_lora_config) |
|
|
|
|
|
|
|
|
def save_model_hook(models, weights, output_dir): |
|
|
if accelerator.is_main_process: |
|
|
transformer_lora_layers_to_save = None |
|
|
|
|
|
for model in models: |
|
|
if isinstance(unwrap_model(accelerator, model), type(unwrap_model(accelerator, transformer))): |
|
|
model = unwrap_model(accelerator, model) |
|
|
transformer_lora_layers_to_save = get_peft_model_state_dict(model) |
|
|
else: |
|
|
raise ValueError(f"unexpected save model: {model.__class__}") |
|
|
|
|
|
|
|
|
if weights: |
|
|
weights.pop() |
|
|
|
|
|
CogVideoXPipeline.save_lora_weights( |
|
|
output_dir, |
|
|
transformer_lora_layers=transformer_lora_layers_to_save, |
|
|
) |
|
|
|
|
|
def load_model_hook(models, input_dir): |
|
|
transformer_ = None |
|
|
|
|
|
|
|
|
if not accelerator.distributed_type == DistributedType.DEEPSPEED: |
|
|
while len(models) > 0: |
|
|
model = models.pop() |
|
|
|
|
|
if isinstance(unwrap_model(accelerator, model), type(unwrap_model(accelerator, transformer))): |
|
|
transformer_ = unwrap_model(accelerator, model) |
|
|
else: |
|
|
raise ValueError(f"Unexpected save model: {unwrap_model(accelerator, model).__class__}") |
|
|
else: |
|
|
transformer_ = CogVideoXTransformer3DModel.from_pretrained( |
|
|
args.pretrained_model_name_or_path, subfolder="transformer" |
|
|
) |
|
|
transformer_.add_adapter(transformer_lora_config) |
|
|
|
|
|
lora_state_dict = CogVideoXPipeline.lora_state_dict(input_dir) |
|
|
|
|
|
transformer_state_dict = { |
|
|
f'{k.replace("transformer.", "")}': v for k, v in lora_state_dict.items() if k.startswith("transformer.") |
|
|
} |
|
|
transformer_state_dict = convert_unet_state_dict_to_peft(transformer_state_dict) |
|
|
incompatible_keys = set_peft_model_state_dict(transformer_, transformer_state_dict, adapter_name="default") |
|
|
if incompatible_keys is not None: |
|
|
|
|
|
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None) |
|
|
if unexpected_keys: |
|
|
logger.warning( |
|
|
f"Loading adapter weights from state_dict led to unexpected keys not found in the model: " |
|
|
f" {unexpected_keys}. " |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if args.mixed_precision == "fp16": |
|
|
|
|
|
cast_training_params([transformer_]) |
|
|
|
|
|
accelerator.register_save_state_pre_hook(save_model_hook) |
|
|
accelerator.register_load_state_pre_hook(load_model_hook) |
|
|
|
|
|
|
|
|
|
|
|
if args.allow_tf32 and torch.cuda.is_available(): |
|
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
|
|
|
|
if args.scale_lr: |
|
|
args.learning_rate = ( |
|
|
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes |
|
|
) |
|
|
|
|
|
|
|
|
if args.mixed_precision == "fp16": |
|
|
|
|
|
cast_training_params([transformer], dtype=torch.float32) |
|
|
|
|
|
transformer_lora_parameters = list(filter(lambda p: p.requires_grad, transformer.parameters())) |
|
|
|
|
|
|
|
|
transformer_parameters_with_lr = { |
|
|
"params": transformer_lora_parameters, |
|
|
"lr": args.learning_rate, |
|
|
} |
|
|
params_to_optimize = [transformer_parameters_with_lr] |
|
|
num_trainable_parameters = sum(param.numel() for model in params_to_optimize for param in model["params"]) |
|
|
|
|
|
use_deepspeed_optimizer = ( |
|
|
accelerator.state.deepspeed_plugin is not None |
|
|
and "optimizer" in accelerator.state.deepspeed_plugin.deepspeed_config |
|
|
) |
|
|
use_deepspeed_scheduler = ( |
|
|
accelerator.state.deepspeed_plugin is not None |
|
|
and "scheduler" in accelerator.state.deepspeed_plugin.deepspeed_config |
|
|
) |
|
|
|
|
|
optimizer = get_optimizer( |
|
|
params_to_optimize=params_to_optimize, |
|
|
optimizer_name=args.optimizer, |
|
|
learning_rate=args.learning_rate, |
|
|
beta1=args.beta1, |
|
|
beta2=args.beta2, |
|
|
beta3=args.beta3, |
|
|
epsilon=args.epsilon, |
|
|
weight_decay=args.weight_decay, |
|
|
prodigy_decouple=args.prodigy_decouple, |
|
|
prodigy_use_bias_correction=args.prodigy_use_bias_correction, |
|
|
prodigy_safeguard_warmup=args.prodigy_safeguard_warmup, |
|
|
use_8bit=args.use_8bit, |
|
|
use_4bit=args.use_4bit, |
|
|
use_torchao=args.use_torchao, |
|
|
use_deepspeed=use_deepspeed_optimizer, |
|
|
use_cpu_offload_optimizer=args.use_cpu_offload_optimizer, |
|
|
offload_gradients=args.offload_gradients, |
|
|
) |
|
|
|
|
|
|
|
|
dataset_init_kwargs = { |
|
|
"data_root": args.data_root, |
|
|
"dataset_file": args.dataset_file, |
|
|
"caption_column": args.caption_column, |
|
|
"video_column": args.video_column, |
|
|
"max_num_frames": args.max_num_frames, |
|
|
"id_token": args.id_token, |
|
|
"height_buckets": args.height_buckets, |
|
|
"width_buckets": args.width_buckets, |
|
|
"frame_buckets": args.frame_buckets, |
|
|
"load_tensors": args.load_tensors, |
|
|
"random_flip": args.random_flip, |
|
|
} |
|
|
if args.video_reshape_mode is None: |
|
|
train_dataset = VideoDatasetWithResizing(**dataset_init_kwargs) |
|
|
else: |
|
|
train_dataset = VideoDatasetWithResizeAndRectangleCrop( |
|
|
video_reshape_mode=args.video_reshape_mode, **dataset_init_kwargs |
|
|
) |
|
|
|
|
|
collate_fn = CollateFunction(weight_dtype, args.load_tensors) |
|
|
|
|
|
train_dataloader = DataLoader( |
|
|
train_dataset, |
|
|
batch_size=1, |
|
|
sampler=BucketSampler(train_dataset, batch_size=args.train_batch_size, shuffle=True), |
|
|
collate_fn=collate_fn, |
|
|
num_workers=args.dataloader_num_workers, |
|
|
pin_memory=args.pin_memory, |
|
|
) |
|
|
|
|
|
|
|
|
overrode_max_train_steps = False |
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
|
if args.max_train_steps is None: |
|
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
|
overrode_max_train_steps = True |
|
|
|
|
|
if args.use_cpu_offload_optimizer: |
|
|
lr_scheduler = None |
|
|
accelerator.print( |
|
|
"CPU Offload Optimizer cannot be used with DeepSpeed or builtin PyTorch LR Schedulers. If " |
|
|
"you are training with those settings, they will be ignored." |
|
|
) |
|
|
else: |
|
|
if use_deepspeed_scheduler: |
|
|
from accelerate.utils import DummyScheduler |
|
|
|
|
|
lr_scheduler = DummyScheduler( |
|
|
name=args.lr_scheduler, |
|
|
optimizer=optimizer, |
|
|
total_num_steps=args.max_train_steps * accelerator.num_processes, |
|
|
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, |
|
|
) |
|
|
else: |
|
|
lr_scheduler = get_scheduler( |
|
|
args.lr_scheduler, |
|
|
optimizer=optimizer, |
|
|
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes, |
|
|
num_training_steps=args.max_train_steps * accelerator.num_processes, |
|
|
num_cycles=args.lr_num_cycles, |
|
|
power=args.lr_power, |
|
|
) |
|
|
|
|
|
|
|
|
transformer, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( |
|
|
transformer, optimizer, train_dataloader, lr_scheduler |
|
|
) |
|
|
|
|
|
|
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) |
|
|
if overrode_max_train_steps: |
|
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
|
|
|
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) |
|
|
|
|
|
|
|
|
|
|
|
if accelerator.distributed_type == DistributedType.DEEPSPEED or accelerator.is_main_process: |
|
|
tracker_name = args.tracker_name or "cogvideox-lora" |
|
|
accelerator.init_trackers(tracker_name, config=vars(args)) |
|
|
|
|
|
accelerator.print("===== Memory before training =====") |
|
|
reset_memory(accelerator.device) |
|
|
print_memory(accelerator.device) |
|
|
|
|
|
|
|
|
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps |
|
|
|
|
|
accelerator.print("***** Running training *****") |
|
|
accelerator.print(f" Num trainable parameters = {num_trainable_parameters}") |
|
|
accelerator.print(f" Num examples = {len(train_dataset)}") |
|
|
accelerator.print(f" Num batches each epoch = {len(train_dataloader)}") |
|
|
accelerator.print(f" Num epochs = {args.num_train_epochs}") |
|
|
accelerator.print(f" Instantaneous batch size per device = {args.train_batch_size}") |
|
|
accelerator.print(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") |
|
|
accelerator.print(f" Gradient accumulation steps = {args.gradient_accumulation_steps}") |
|
|
accelerator.print(f" Total optimization steps = {args.max_train_steps}") |
|
|
global_step = 0 |
|
|
first_epoch = 0 |
|
|
|
|
|
|
|
|
if not args.resume_from_checkpoint: |
|
|
initial_global_step = 0 |
|
|
else: |
|
|
if args.resume_from_checkpoint != "latest": |
|
|
path = os.path.basename(args.resume_from_checkpoint) |
|
|
else: |
|
|
|
|
|
dirs = os.listdir(args.output_dir) |
|
|
dirs = [d for d in dirs if d.startswith("checkpoint")] |
|
|
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) |
|
|
path = dirs[-1] if len(dirs) > 0 else None |
|
|
|
|
|
if path is None: |
|
|
accelerator.print( |
|
|
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." |
|
|
) |
|
|
args.resume_from_checkpoint = None |
|
|
initial_global_step = 0 |
|
|
else: |
|
|
accelerator.print(f"Resuming from checkpoint {path}") |
|
|
accelerator.load_state(os.path.join(args.output_dir, path)) |
|
|
global_step = int(path.split("-")[1]) |
|
|
|
|
|
initial_global_step = global_step |
|
|
first_epoch = global_step // num_update_steps_per_epoch |
|
|
|
|
|
progress_bar = tqdm( |
|
|
range(0, args.max_train_steps), |
|
|
initial=initial_global_step, |
|
|
desc="Steps", |
|
|
|
|
|
disable=not accelerator.is_local_main_process, |
|
|
) |
|
|
|
|
|
|
|
|
model_config = transformer.module.config if hasattr(transformer, "module") else transformer.config |
|
|
|
|
|
if args.load_tensors: |
|
|
del vae, text_encoder |
|
|
gc.collect() |
|
|
torch.cuda.empty_cache() |
|
|
torch.cuda.synchronize(accelerator.device) |
|
|
|
|
|
alphas_cumprod = scheduler.alphas_cumprod.to(accelerator.device, dtype=torch.float32) |
|
|
|
|
|
for epoch in range(first_epoch, args.num_train_epochs): |
|
|
transformer.train() |
|
|
|
|
|
for step, batch in enumerate(train_dataloader): |
|
|
models_to_accumulate = [transformer] |
|
|
logs = {} |
|
|
|
|
|
with accelerator.accumulate(models_to_accumulate): |
|
|
videos = batch["videos"].to(accelerator.device, non_blocking=True) |
|
|
prompts = batch["prompts"] |
|
|
|
|
|
|
|
|
if not args.load_tensors: |
|
|
videos = videos.permute(0, 2, 1, 3, 4) |
|
|
latent_dist = vae.encode(videos).latent_dist |
|
|
else: |
|
|
latent_dist = DiagonalGaussianDistribution(videos) |
|
|
|
|
|
videos = latent_dist.sample() * VAE_SCALING_FACTOR |
|
|
videos = videos.permute(0, 2, 1, 3, 4) |
|
|
videos = videos.to(memory_format=torch.contiguous_format, dtype=weight_dtype) |
|
|
model_input = videos |
|
|
|
|
|
|
|
|
if not args.load_tensors: |
|
|
prompt_embeds = compute_prompt_embeddings( |
|
|
tokenizer, |
|
|
text_encoder, |
|
|
prompts, |
|
|
model_config.max_text_seq_length, |
|
|
accelerator.device, |
|
|
weight_dtype, |
|
|
requires_grad=False, |
|
|
) |
|
|
else: |
|
|
prompt_embeds = prompts.to(dtype=weight_dtype) |
|
|
|
|
|
|
|
|
noise = torch.randn_like(model_input) |
|
|
batch_size, num_frames, num_channels, height, width = model_input.shape |
|
|
|
|
|
|
|
|
timesteps = torch.randint( |
|
|
0, |
|
|
scheduler.config.num_train_timesteps, |
|
|
(batch_size,), |
|
|
dtype=torch.int64, |
|
|
device=model_input.device, |
|
|
) |
|
|
|
|
|
|
|
|
image_rotary_emb = ( |
|
|
prepare_rotary_positional_embeddings( |
|
|
height=height * VAE_SCALE_FACTOR_SPATIAL, |
|
|
width=width * VAE_SCALE_FACTOR_SPATIAL, |
|
|
num_frames=num_frames, |
|
|
vae_scale_factor_spatial=VAE_SCALE_FACTOR_SPATIAL, |
|
|
patch_size=model_config.patch_size, |
|
|
patch_size_t=model_config.patch_size_t if hasattr(model_config, "patch_size_t") else None, |
|
|
attention_head_dim=model_config.attention_head_dim, |
|
|
device=accelerator.device, |
|
|
base_height=RoPE_BASE_HEIGHT, |
|
|
base_width=RoPE_BASE_WIDTH, |
|
|
) |
|
|
if model_config.use_rotary_positional_embeddings |
|
|
else None |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
noisy_model_input = scheduler.add_noise(model_input, noise, timesteps) |
|
|
|
|
|
|
|
|
model_output = transformer( |
|
|
hidden_states=noisy_model_input, |
|
|
encoder_hidden_states=prompt_embeds, |
|
|
timestep=timesteps, |
|
|
image_rotary_emb=image_rotary_emb, |
|
|
return_dict=False, |
|
|
)[0] |
|
|
|
|
|
model_pred = scheduler.get_velocity(model_output, noisy_model_input, timesteps) |
|
|
|
|
|
weights = 1 / (1 - alphas_cumprod[timesteps]) |
|
|
while len(weights.shape) < len(model_pred.shape): |
|
|
weights = weights.unsqueeze(-1) |
|
|
|
|
|
target = model_input |
|
|
|
|
|
loss = torch.mean( |
|
|
(weights * (model_pred - target) ** 2).reshape(batch_size, -1), |
|
|
dim=1, |
|
|
) |
|
|
loss = loss.mean() |
|
|
accelerator.backward(loss) |
|
|
|
|
|
if accelerator.sync_gradients and accelerator.distributed_type != DistributedType.DEEPSPEED: |
|
|
gradient_norm_before_clip = get_gradient_norm(transformer.parameters()) |
|
|
accelerator.clip_grad_norm_(transformer.parameters(), args.max_grad_norm) |
|
|
gradient_norm_after_clip = get_gradient_norm(transformer.parameters()) |
|
|
logs.update( |
|
|
{ |
|
|
"gradient_norm_before_clip": gradient_norm_before_clip, |
|
|
"gradient_norm_after_clip": gradient_norm_after_clip, |
|
|
} |
|
|
) |
|
|
|
|
|
if accelerator.state.deepspeed_plugin is None: |
|
|
optimizer.step() |
|
|
optimizer.zero_grad() |
|
|
|
|
|
if not args.use_cpu_offload_optimizer: |
|
|
lr_scheduler.step() |
|
|
|
|
|
|
|
|
if accelerator.sync_gradients: |
|
|
progress_bar.update(1) |
|
|
global_step += 1 |
|
|
|
|
|
if accelerator.distributed_type == DistributedType.DEEPSPEED or accelerator.is_main_process: |
|
|
if global_step % args.checkpointing_steps == 0: |
|
|
|
|
|
if args.checkpoints_total_limit is not None: |
|
|
checkpoints = os.listdir(args.output_dir) |
|
|
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] |
|
|
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) |
|
|
|
|
|
|
|
|
if len(checkpoints) >= args.checkpoints_total_limit: |
|
|
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 |
|
|
removing_checkpoints = checkpoints[0:num_to_remove] |
|
|
|
|
|
logger.info( |
|
|
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" |
|
|
) |
|
|
logger.info(f"Removing checkpoints: {', '.join(removing_checkpoints)}") |
|
|
|
|
|
for removing_checkpoint in removing_checkpoints: |
|
|
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) |
|
|
shutil.rmtree(removing_checkpoint) |
|
|
|
|
|
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") |
|
|
accelerator.save_state(save_path) |
|
|
logger.info(f"Saved state to {save_path}") |
|
|
|
|
|
last_lr = lr_scheduler.get_last_lr()[0] if lr_scheduler is not None else args.learning_rate |
|
|
logs.update( |
|
|
{ |
|
|
"loss": loss.detach().item(), |
|
|
"lr": last_lr, |
|
|
} |
|
|
) |
|
|
progress_bar.set_postfix(**logs) |
|
|
accelerator.log(logs, step=global_step) |
|
|
|
|
|
if global_step >= args.max_train_steps: |
|
|
break |
|
|
|
|
|
if accelerator.is_main_process: |
|
|
if args.validation_prompt is not None and (epoch + 1) % args.validation_epochs == 0: |
|
|
accelerator.print("===== Memory before validation =====") |
|
|
print_memory(accelerator.device) |
|
|
torch.cuda.synchronize(accelerator.device) |
|
|
|
|
|
pipe = CogVideoXPipeline.from_pretrained( |
|
|
args.pretrained_model_name_or_path, |
|
|
transformer=unwrap_model(accelerator, transformer), |
|
|
scheduler=scheduler, |
|
|
revision=args.revision, |
|
|
variant=args.variant, |
|
|
torch_dtype=weight_dtype, |
|
|
) |
|
|
|
|
|
if args.enable_slicing: |
|
|
pipe.vae.enable_slicing() |
|
|
if args.enable_tiling: |
|
|
pipe.vae.enable_tiling() |
|
|
if args.enable_model_cpu_offload: |
|
|
pipe.enable_model_cpu_offload() |
|
|
|
|
|
validation_prompts = args.validation_prompt.split(args.validation_prompt_separator) |
|
|
for validation_prompt in validation_prompts: |
|
|
pipeline_args = { |
|
|
"prompt": validation_prompt, |
|
|
"guidance_scale": args.guidance_scale, |
|
|
"use_dynamic_cfg": args.use_dynamic_cfg, |
|
|
"height": args.height, |
|
|
"width": args.width, |
|
|
"max_sequence_length": model_config.max_text_seq_length, |
|
|
} |
|
|
|
|
|
log_validation( |
|
|
pipe=pipe, |
|
|
args=args, |
|
|
accelerator=accelerator, |
|
|
pipeline_args=pipeline_args, |
|
|
epoch=epoch, |
|
|
) |
|
|
|
|
|
accelerator.print("===== Memory after validation =====") |
|
|
print_memory(accelerator.device) |
|
|
reset_memory(accelerator.device) |
|
|
|
|
|
del pipe |
|
|
gc.collect() |
|
|
torch.cuda.empty_cache() |
|
|
torch.cuda.synchronize(accelerator.device) |
|
|
|
|
|
accelerator.wait_for_everyone() |
|
|
|
|
|
if accelerator.is_main_process: |
|
|
transformer = unwrap_model(accelerator, transformer) |
|
|
dtype = ( |
|
|
torch.float16 |
|
|
if args.mixed_precision == "fp16" |
|
|
else torch.bfloat16 |
|
|
if args.mixed_precision == "bf16" |
|
|
else torch.float32 |
|
|
) |
|
|
transformer = transformer.to(dtype) |
|
|
transformer_lora_layers = get_peft_model_state_dict(transformer) |
|
|
|
|
|
CogVideoXPipeline.save_lora_weights( |
|
|
save_directory=args.output_dir, |
|
|
transformer_lora_layers=transformer_lora_layers, |
|
|
) |
|
|
|
|
|
|
|
|
if args.load_tensors: |
|
|
del transformer |
|
|
else: |
|
|
del transformer, text_encoder, vae |
|
|
|
|
|
gc.collect() |
|
|
torch.cuda.empty_cache() |
|
|
torch.cuda.synchronize(accelerator.device) |
|
|
|
|
|
accelerator.print("===== Memory before testing =====") |
|
|
print_memory(accelerator.device) |
|
|
reset_memory(accelerator.device) |
|
|
|
|
|
|
|
|
pipe = CogVideoXPipeline.from_pretrained( |
|
|
args.pretrained_model_name_or_path, |
|
|
revision=args.revision, |
|
|
variant=args.variant, |
|
|
torch_dtype=weight_dtype, |
|
|
) |
|
|
pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config) |
|
|
|
|
|
if args.enable_slicing: |
|
|
pipe.vae.enable_slicing() |
|
|
if args.enable_tiling: |
|
|
pipe.vae.enable_tiling() |
|
|
if args.enable_model_cpu_offload: |
|
|
pipe.enable_model_cpu_offload() |
|
|
|
|
|
|
|
|
lora_scaling = args.lora_alpha / args.rank |
|
|
pipe.load_lora_weights(args.output_dir, adapter_name="cogvideox-lora") |
|
|
pipe.set_adapters(["cogvideox-lora"], [lora_scaling]) |
|
|
|
|
|
|
|
|
validation_outputs = [] |
|
|
if args.validation_prompt and args.num_validation_videos > 0: |
|
|
validation_prompts = args.validation_prompt.split(args.validation_prompt_separator) |
|
|
for validation_prompt in validation_prompts: |
|
|
pipeline_args = { |
|
|
"prompt": validation_prompt, |
|
|
"guidance_scale": args.guidance_scale, |
|
|
"use_dynamic_cfg": args.use_dynamic_cfg, |
|
|
"height": args.height, |
|
|
"width": args.width, |
|
|
} |
|
|
|
|
|
video = log_validation( |
|
|
accelerator=accelerator, |
|
|
pipe=pipe, |
|
|
args=args, |
|
|
pipeline_args=pipeline_args, |
|
|
epoch=epoch, |
|
|
is_final_validation=True, |
|
|
) |
|
|
validation_outputs.extend(video) |
|
|
|
|
|
accelerator.print("===== Memory after testing =====") |
|
|
print_memory(accelerator.device) |
|
|
reset_memory(accelerator.device) |
|
|
torch.cuda.synchronize(accelerator.device) |
|
|
|
|
|
if args.push_to_hub: |
|
|
save_model_card( |
|
|
repo_id, |
|
|
videos=validation_outputs, |
|
|
base_model=args.pretrained_model_name_or_path, |
|
|
validation_prompt=args.validation_prompt, |
|
|
repo_folder=args.output_dir, |
|
|
fps=args.fps, |
|
|
) |
|
|
upload_folder( |
|
|
repo_id=repo_id, |
|
|
folder_path=args.output_dir, |
|
|
commit_message="End of training", |
|
|
ignore_patterns=["step_*", "epoch_*"], |
|
|
) |
|
|
|
|
|
accelerator.end_training() |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
args = get_args() |
|
|
main(args) |
|
|
|