Spaces:
Running
Running
| set -e -x | |
| # export TORCH_LOGS="+dynamo,recompiles,graph_breaks" | |
| # export TORCHDYNAMO_VERBOSE=1 | |
| export WANDB_MODE="offline" | |
| export NCCL_P2P_DISABLE=1 | |
| export TORCH_NCCL_ENABLE_MONITORING=0 | |
| export FINETRAINERS_LOG_LEVEL="DEBUG" | |
| # Finetrainers supports multiple backends for distributed training. Select your favourite and benchmark the differences! | |
| # BACKEND="accelerate" | |
| BACKEND="ptd" | |
| # In this setting, I'm using 2 GPUs on a 4-GPU node for training | |
| NUM_GPUS=2 | |
| CUDA_VISIBLE_DEVICES="2,3" | |
| # Check the JSON files for the expected JSON format | |
| TRAINING_DATASET_CONFIG="examples/training/sft/wan/crush_smol_lora/training.json" | |
| VALIDATION_DATASET_FILE="examples/training/sft/wan/crush_smol_lora/validation.json" | |
| # Depending on how many GPUs you have available, choose your degree of parallelism and technique! | |
| DDP_1="--parallel_backend $BACKEND --pp_degree 1 --dp_degree 1 --dp_shards 1 --cp_degree 1 --tp_degree 1" | |
| DDP_2="--parallel_backend $BACKEND --pp_degree 1 --dp_degree 2 --dp_shards 1 --cp_degree 1 --tp_degree 1" | |
| DDP_4="--parallel_backend $BACKEND --pp_degree 1 --dp_degree 4 --dp_shards 1 --cp_degree 1 --tp_degree 1" | |
| FSDP_2="--parallel_backend $BACKEND --pp_degree 1 --dp_degree 1 --dp_shards 2 --cp_degree 1 --tp_degree 1" | |
| FSDP_4="--parallel_backend $BACKEND --pp_degree 1 --dp_degree 1 --dp_shards 4 --cp_degree 1 --tp_degree 1" | |
| HSDP_2_2="--parallel_backend $BACKEND --pp_degree 1 --dp_degree 2 --dp_shards 2 --cp_degree 1 --tp_degree 1" | |
| # Parallel arguments | |
| parallel_cmd=( | |
| $DDP_2 | |
| ) | |
| # Model arguments | |
| model_cmd=( | |
| --model_name "wan" | |
| --pretrained_model_name_or_path "Wan-AI/Wan2.1-T2V-1.3B-Diffusers" | |
| ) | |
| # Dataset arguments | |
| # Here, we know that the dataset size if about ~50 videos. Since we're using 2 GPUs, we precompute | |
| # embeddings of 25 dataset items per GPU. Also, we're using a very small dataset for finetuning, so | |
| # we are okay with precomputing embeddings once and re-using them without having to worry about disk | |
| # space. Currently, however, every new training run performs precomputation even if it's not required | |
| # (which is something we've to improve [TODO(aryan)]) | |
| dataset_cmd=( | |
| --dataset_config $TRAINING_DATASET_CONFIG | |
| --dataset_shuffle_buffer_size 10 | |
| --precomputation_items 25 | |
| --precomputation_once | |
| ) | |
| # Dataloader arguments | |
| dataloader_cmd=( | |
| --dataloader_num_workers 0 | |
| ) | |
| # Diffusion arguments | |
| diffusion_cmd=( | |
| --flow_weighting_scheme "logit_normal" | |
| ) | |
| # Training arguments | |
| # We target just the attention projections layers for LoRA training here. | |
| # You can modify as you please and target any layer (regex is supported) | |
| training_cmd=( | |
| --training_type "lora" | |
| --seed 42 | |
| --batch_size 1 | |
| --train_steps 3000 | |
| --rank 32 | |
| --lora_alpha 32 | |
| --target_modules "blocks.*(to_q|to_k|to_v|to_out.0)" | |
| --gradient_accumulation_steps 1 | |
| --gradient_checkpointing | |
| --checkpointing_steps 500 | |
| --checkpointing_limit 2 | |
| # --resume_from_checkpoint 3000 | |
| --enable_slicing | |
| --enable_tiling | |
| ) | |
| # Optimizer arguments | |
| optimizer_cmd=( | |
| --optimizer "adamw" | |
| --lr 5e-5 | |
| --lr_scheduler "constant_with_warmup" | |
| --lr_warmup_steps 1000 | |
| --lr_num_cycles 1 | |
| --beta1 0.9 | |
| --beta2 0.99 | |
| --weight_decay 1e-4 | |
| --epsilon 1e-8 | |
| --max_grad_norm 1.0 | |
| ) | |
| # Validation arguments | |
| validation_cmd=( | |
| --validation_dataset_file "$VALIDATION_DATASET_FILE" | |
| --validation_steps 500 | |
| ) | |
| # Miscellaneous arguments | |
| miscellaneous_cmd=( | |
| --tracker_name "finetrainers-wan" | |
| --output_dir "/raid/aryan/wan" | |
| --init_timeout 600 | |
| --nccl_timeout 600 | |
| --report_to "wandb" | |
| ) | |
| # Execute the training script | |
| if [ "$BACKEND" == "accelerate" ]; then | |
| ACCELERATE_CONFIG_FILE="" | |
| if [ "$NUM_GPUS" == 1 ]; then | |
| ACCELERATE_CONFIG_FILE="accelerate_configs/uncompiled_1.yaml" | |
| elif [ "$NUM_GPUS" == 2 ]; then | |
| ACCELERATE_CONFIG_FILE="accelerate_configs/uncompiled_2.yaml" | |
| elif [ "$NUM_GPUS" == 4 ]; then | |
| ACCELERATE_CONFIG_FILE="accelerate_configs/uncompiled_4.yaml" | |
| elif [ "$NUM_GPUS" == 8 ]; then | |
| ACCELERATE_CONFIG_FILE="accelerate_configs/uncompiled_8.yaml" | |
| fi | |
| accelerate launch --config_file "$ACCELERATE_CONFIG_FILE" --gpu_ids $CUDA_VISIBLE_DEVICES train.py \ | |
| "${parallel_cmd[@]}" \ | |
| "${model_cmd[@]}" \ | |
| "${dataset_cmd[@]}" \ | |
| "${dataloader_cmd[@]}" \ | |
| "${diffusion_cmd[@]}" \ | |
| "${training_cmd[@]}" \ | |
| "${optimizer_cmd[@]}" \ | |
| "${validation_cmd[@]}" \ | |
| "${miscellaneous_cmd[@]}" | |
| elif [ "$BACKEND" == "ptd" ]; then | |
| export CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES | |
| torchrun \ | |
| --standalone \ | |
| --nnodes=1 \ | |
| --nproc_per_node=$NUM_GPUS \ | |
| --rdzv_backend c10d \ | |
| --rdzv_endpoint="localhost:0" \ | |
| train.py \ | |
| "${parallel_cmd[@]}" \ | |
| "${model_cmd[@]}" \ | |
| "${dataset_cmd[@]}" \ | |
| "${dataloader_cmd[@]}" \ | |
| "${diffusion_cmd[@]}" \ | |
| "${training_cmd[@]}" \ | |
| "${optimizer_cmd[@]}" \ | |
| "${validation_cmd[@]}" \ | |
| "${miscellaneous_cmd[@]}" | |
| fi | |
| echo -ne "-------------------- Finished executing script --------------------\n\n" | |