jbilcke-hf's picture
jbilcke-hf HF Staff
we are going to hack into finetrainers
9fd1204
raw
history blame
16 kB
import functools
import os
from typing import Any, Dict, List, Optional, Tuple
import torch
from accelerate import init_empty_weights
from diffusers import (
AutoencoderKLCogVideoX,
CogVideoXDDIMScheduler,
CogVideoXImageToVideoPipeline,
CogVideoXPipeline,
CogVideoXTransformer3DModel,
)
from PIL.Image import Image
from transformers import AutoModel, AutoTokenizer, T5EncoderModel, T5Tokenizer
from finetrainers.data import VideoArtifact
from finetrainers.logging import get_logger
from finetrainers.models.modeling_utils import ModelSpecification
from finetrainers.models.utils import DiagonalGaussianDistribution
from finetrainers.processors import ProcessorMixin, T5Processor
from finetrainers.typing import ArtifactType, SchedulerType
from finetrainers.utils import _enable_vae_memory_optimizations, get_non_null_items, safetensors_torch_save_function
from .utils import prepare_rotary_positional_embeddings
logger = get_logger()
class CogVideoXLatentEncodeProcessor(ProcessorMixin):
r"""
Processor to encode image/video into latents using the CogVideoX VAE.
Args:
output_names (`List[str]`):
The names of the outputs that the processor returns. The outputs are in the following order:
- latents: The latents of the input image/video.
"""
def __init__(self, output_names: List[str]):
super().__init__()
self.output_names = output_names
assert len(self.output_names) == 1
def forward(
self,
vae: AutoencoderKLCogVideoX,
image: Optional[torch.Tensor] = None,
video: Optional[torch.Tensor] = None,
generator: Optional[torch.Generator] = None,
compute_posterior: bool = True,
) -> Dict[str, torch.Tensor]:
device = vae.device
dtype = vae.dtype
if image is not None:
video = image.unsqueeze(1)
assert video.ndim == 5, f"Expected 5D tensor, got {video.ndim}D tensor"
video = video.to(device=device, dtype=vae.dtype)
video = video.permute(0, 2, 1, 3, 4).contiguous() # [B, F, C, H, W] -> [B, C, F, H, W]
if compute_posterior:
latents = vae.encode(video).latent_dist.sample(generator=generator)
latents = latents.to(dtype=dtype)
else:
if vae.use_slicing and video.shape[0] > 1:
encoded_slices = [vae._encode(x_slice) for x_slice in video.split(1)]
moments = torch.cat(encoded_slices)
else:
moments = vae._encode(video)
latents = moments.to(dtype=dtype)
latents = latents.permute(0, 2, 1, 3, 4) # [B, C, F, H, W] -> [B, F, C, H, W]
return {self.output_names[0]: latents}
class CogVideoXModelSpecification(ModelSpecification):
def __init__(
self,
pretrained_model_name_or_path: str = "THUDM/CogVideoX-5b",
tokenizer_id: Optional[str] = None,
text_encoder_id: Optional[str] = None,
transformer_id: Optional[str] = None,
vae_id: Optional[str] = None,
text_encoder_dtype: torch.dtype = torch.bfloat16,
transformer_dtype: torch.dtype = torch.bfloat16,
vae_dtype: torch.dtype = torch.bfloat16,
revision: Optional[str] = None,
cache_dir: Optional[str] = None,
condition_model_processors: List[ProcessorMixin] = None,
latent_model_processors: List[ProcessorMixin] = None,
**kwargs,
) -> None:
super().__init__(
pretrained_model_name_or_path=pretrained_model_name_or_path,
tokenizer_id=tokenizer_id,
text_encoder_id=text_encoder_id,
transformer_id=transformer_id,
vae_id=vae_id,
text_encoder_dtype=text_encoder_dtype,
transformer_dtype=transformer_dtype,
vae_dtype=vae_dtype,
revision=revision,
cache_dir=cache_dir,
)
if condition_model_processors is None:
condition_model_processors = [T5Processor(["encoder_hidden_states", "prompt_attention_mask"])]
if latent_model_processors is None:
latent_model_processors = [CogVideoXLatentEncodeProcessor(["latents"])]
self.condition_model_processors = condition_model_processors
self.latent_model_processors = latent_model_processors
@property
def _resolution_dim_keys(self):
return {"latents": (1, 3, 4)}
def load_condition_models(self) -> Dict[str, torch.nn.Module]:
common_kwargs = {"revision": self.revision, "cache_dir": self.cache_dir}
if self.tokenizer_id is not None:
tokenizer = AutoTokenizer.from_pretrained(self.tokenizer_id, **common_kwargs)
else:
tokenizer = T5Tokenizer.from_pretrained(
self.pretrained_model_name_or_path, subfolder="tokenizer", **common_kwargs
)
if self.text_encoder_id is not None:
text_encoder = AutoModel.from_pretrained(
self.text_encoder_id, torch_dtype=self.text_encoder_dtype, **common_kwargs
)
else:
text_encoder = T5EncoderModel.from_pretrained(
self.pretrained_model_name_or_path,
subfolder="text_encoder",
torch_dtype=self.text_encoder_dtype,
**common_kwargs,
)
return {"tokenizer": tokenizer, "text_encoder": text_encoder}
def load_latent_models(self) -> Dict[str, torch.nn.Module]:
common_kwargs = {"revision": self.revision, "cache_dir": self.cache_dir}
if self.vae_id is not None:
vae = AutoencoderKLCogVideoX.from_pretrained(self.vae_id, torch_dtype=self.vae_dtype, **common_kwargs)
else:
vae = AutoencoderKLCogVideoX.from_pretrained(
self.pretrained_model_name_or_path, subfolder="vae", torch_dtype=self.vae_dtype, **common_kwargs
)
return {"vae": vae}
def load_diffusion_models(self) -> Dict[str, torch.nn.Module]:
common_kwargs = {"revision": self.revision, "cache_dir": self.cache_dir}
if self.transformer_id is not None:
transformer = CogVideoXTransformer3DModel.from_pretrained(
self.transformer_id, torch_dtype=self.transformer_dtype, **common_kwargs
)
else:
transformer = CogVideoXTransformer3DModel.from_pretrained(
self.pretrained_model_name_or_path,
subfolder="transformer",
torch_dtype=self.transformer_dtype,
**common_kwargs,
)
scheduler = CogVideoXDDIMScheduler.from_pretrained(
self.pretrained_model_name_or_path, subfolder="scheduler", **common_kwargs
)
return {"transformer": transformer, "scheduler": scheduler}
def load_pipeline(
self,
tokenizer: Optional[T5Tokenizer] = None,
text_encoder: Optional[T5EncoderModel] = None,
transformer: Optional[CogVideoXTransformer3DModel] = None,
vae: Optional[AutoencoderKLCogVideoX] = None,
scheduler: Optional[CogVideoXDDIMScheduler] = None,
enable_slicing: bool = False,
enable_tiling: bool = False,
enable_model_cpu_offload: bool = False,
training: bool = False,
**kwargs,
) -> CogVideoXPipeline:
components = {
"tokenizer": tokenizer,
"text_encoder": text_encoder,
"transformer": transformer,
"vae": vae,
"scheduler": scheduler,
}
components = get_non_null_items(components)
pipe = CogVideoXPipeline.from_pretrained(
self.pretrained_model_name_or_path, **components, revision=self.revision, cache_dir=self.cache_dir
)
pipe.text_encoder.to(self.text_encoder_dtype)
pipe.vae.to(self.vae_dtype)
_enable_vae_memory_optimizations(pipe.vae, enable_slicing, enable_tiling)
if not training:
pipe.transformer.to(self.transformer_dtype)
if enable_model_cpu_offload:
pipe.enable_model_cpu_offload()
return pipe
@torch.no_grad()
def prepare_conditions(
self,
tokenizer: T5Tokenizer,
text_encoder: T5EncoderModel,
caption: str,
max_sequence_length: int = 226,
**kwargs,
) -> Dict[str, Any]:
conditions = {
"tokenizer": tokenizer,
"text_encoder": text_encoder,
"caption": caption,
"max_sequence_length": max_sequence_length,
**kwargs,
}
input_keys = set(conditions.keys())
conditions = super().prepare_conditions(**conditions)
conditions = {k: v for k, v in conditions.items() if k not in input_keys}
conditions.pop("prompt_attention_mask", None)
return conditions
@torch.no_grad()
def prepare_latents(
self,
vae: AutoencoderKLCogVideoX,
image: Optional[torch.Tensor] = None,
video: Optional[torch.Tensor] = None,
generator: Optional[torch.Generator] = None,
compute_posterior: bool = True,
**kwargs,
) -> Dict[str, torch.Tensor]:
conditions = {
"vae": vae,
"image": image,
"video": video,
"generator": generator,
"compute_posterior": compute_posterior,
**kwargs,
}
input_keys = set(conditions.keys())
conditions = super().prepare_latents(**conditions)
conditions = {k: v for k, v in conditions.items() if k not in input_keys}
return conditions
def forward(
self,
transformer: CogVideoXTransformer3DModel,
scheduler: CogVideoXDDIMScheduler,
condition_model_conditions: Dict[str, torch.Tensor],
latent_model_conditions: Dict[str, torch.Tensor],
sigmas: torch.Tensor,
generator: Optional[torch.Generator] = None,
compute_posterior: bool = True,
**kwargs,
) -> Tuple[torch.Tensor, ...]:
# Just hardcode for now. In Diffusers, we will refactor such that RoPE would be handled within the model itself.
VAE_SPATIAL_SCALE_FACTOR = 8
rope_base_height = self.transformer_config.sample_height * VAE_SPATIAL_SCALE_FACTOR
rope_base_width = self.transformer_config.sample_width * VAE_SPATIAL_SCALE_FACTOR
patch_size = self.transformer_config.patch_size
patch_size_t = getattr(self.transformer_config, "patch_size_t", None)
if compute_posterior:
latents = latent_model_conditions.pop("latents")
else:
posterior = DiagonalGaussianDistribution(latent_model_conditions.pop("latents"), _dim=2)
latents = posterior.sample(generator=generator)
del posterior
if not getattr(self.vae_config, "invert_scale_latents", False):
latents = latents * self.vae_config.scaling_factor
if patch_size_t is not None:
latents = self._pad_frames(latents, patch_size_t)
timesteps = (sigmas.flatten() * 1000.0).long()
noise = torch.zeros_like(latents).normal_(generator=generator)
noisy_latents = scheduler.add_noise(latents, noise, timesteps)
batch_size, num_frames, num_channels, height, width = latents.shape
ofs_emb = (
None
if getattr(self.transformer_config, "ofs_embed_dim", None) is None
else latents.new_full((batch_size,), fill_value=2.0)
)
image_rotary_emb = (
prepare_rotary_positional_embeddings(
height=height * VAE_SPATIAL_SCALE_FACTOR,
width=width * VAE_SPATIAL_SCALE_FACTOR,
num_frames=num_frames,
vae_scale_factor_spatial=VAE_SPATIAL_SCALE_FACTOR,
patch_size=patch_size,
patch_size_t=patch_size_t,
attention_head_dim=self.transformer_config.attention_head_dim,
device=transformer.device,
base_height=rope_base_height,
base_width=rope_base_width,
)
if self.transformer_config.use_rotary_positional_embeddings
else None
)
latent_model_conditions["hidden_states"] = noisy_latents.to(latents)
latent_model_conditions["image_rotary_emb"] = image_rotary_emb
latent_model_conditions["ofs"] = ofs_emb
velocity = transformer(
**latent_model_conditions,
**condition_model_conditions,
timestep=timesteps,
return_dict=False,
)[0]
# For CogVideoX, the transformer predicts the velocity. The denoised output is calculated by applying the same
# code paths as scheduler.get_velocity(), which can be confusing to understand.
pred = scheduler.get_velocity(velocity, noisy_latents, timesteps)
target = latents
return pred, target, sigmas
def validation(
self,
pipeline: CogVideoXPipeline,
prompt: str,
image: Optional[Image] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_frames: Optional[int] = None,
num_inference_steps: int = 50,
generator: Optional[torch.Generator] = None,
**kwargs,
) -> List[ArtifactType]:
# TODO(aryan): add support for more parameters
if image is not None:
pipeline = CogVideoXImageToVideoPipeline.from_pipe(pipeline)
generation_kwargs = {
"prompt": prompt,
"image": image,
"height": height,
"width": width,
"num_frames": num_frames,
"num_inference_steps": num_inference_steps,
"generator": generator,
"return_dict": True,
"output_type": "pil",
}
generation_kwargs = get_non_null_items(generation_kwargs)
video = pipeline(**generation_kwargs).frames[0]
return [VideoArtifact(value=video)]
def _save_lora_weights(
self,
directory: str,
transformer_state_dict: Optional[Dict[str, torch.Tensor]] = None,
scheduler: Optional[SchedulerType] = None,
metadata: Optional[Dict[str, str]] = None,
*args,
**kwargs,
) -> None:
# TODO(aryan): this needs refactoring
if transformer_state_dict is not None:
CogVideoXPipeline.save_lora_weights(
directory,
transformer_state_dict,
save_function=functools.partial(safetensors_torch_save_function, metadata=metadata),
safe_serialization=True,
)
if scheduler is not None:
scheduler.save_pretrained(os.path.join(directory, "scheduler"))
def _save_model(
self,
directory: str,
transformer: CogVideoXTransformer3DModel,
transformer_state_dict: Optional[Dict[str, torch.Tensor]] = None,
scheduler: Optional[SchedulerType] = None,
) -> None:
# TODO(aryan): this needs refactoring
if transformer_state_dict is not None:
with init_empty_weights():
transformer_copy = CogVideoXTransformer3DModel.from_config(transformer.config)
transformer_copy.load_state_dict(transformer_state_dict, strict=True, assign=True)
transformer_copy.save_pretrained(os.path.join(directory, "transformer"))
if scheduler is not None:
scheduler.save_pretrained(os.path.join(directory, "scheduler"))
@staticmethod
def _pad_frames(latents: torch.Tensor, patch_size_t: int) -> torch.Tensor:
num_frames = latents.size(1)
additional_frames = patch_size_t - (num_frames % patch_size_t)
if additional_frames > 0:
last_frame = latents[:, -1:]
padding_frames = last_frame.expand(-1, additional_frames, -1, -1, -1)
latents = torch.cat([latents, padding_frames], dim=1)
return latents